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ABSTRACT 

FACTORS INFLUENCING SPARTINA ALTERNIFLORA PRODUCTIVITY IN 
RELATIONSHIP TO ESTUARY INLET OPENING 

ELLISVILLE MARSH, PLYMOUTH, MA 
 

SEPTEMBER 2019 
 

ELLEN K. RUSSELL, B.S., UNIVERSITY OF NEW HAMPSHIRE 
 

M.S., PURDUE UNIVERSITY 
 

Ph.D., UNIVERSITY OF MASSACHUSETTS AMHERST 
 

Directed by: Professor Baoshan Xing 
 
A scientific basis for understanding the health of salt marsh vegetation, primarily 

Spartina alterniflora, in apposition to dredging of the tidal inlet to Ellisville Marsh in 

Plymouth, Massachusetts was determined. A three-hectare S. alterniflora loss, and 

coincident coastal bank erosion occurred; ostensibly due to inlet blockage from sand 

deposition, prolonged inundation, and meandering of inlet channel into coastal bank. This 

warranted dredging the tidal inlet, whereby tidal flushing would restore growth or 

discontinue die-off, and deter coastal bank erosion. A pre- and post dredge study was 

conducted assessing environmental factors related to plant productivity. Following 

dredging, an increase in tidal range (0.2 m, p<0.05) was observed, while measured 

hydroperiod lagged behind tidal range improvements by at least seven months. 

Inundation frequency ultimately increased for lower and decreased for higher elevation 

plots. Hydraulic connection between ocean and marsh was increased following opening. 

Percent cover of tall S. alterniflora increased from pre-dredge conditions in both 

landscape and plot level assessments (p<0.1), while short S. alterniflora and Spartina 

patens coverage decreased (p<0.001). Mean S. alterniflora stem density, above and 
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below ground biomass decreased (p<0.001) with the onset of decline corresponding to 

the hydroperiod lag.  S.alterniflora height increased linearly with hydroperiod (p<0.001, 

r2= 0.12). Root alcohol dehydrogenase activity and redox were inversely correlated, and 

mean redox shifted from -100 mv to +100 mv (p<0.001), the switch corresponding to the 

hydroperiod lag. Porewater salinity and ammonia did not vary, although orthophosphate 

declined (p<0.001). Haliaspis spartinae, an insect pest, was found to be associated with 

hydroperiod. The Marsh Equilibrium Model (MEM v. 5.4) demonstrated vertical 

resilience, whereas the Unvegetated to Vegetated Index (UVVI) approach did not show 

horizontal resilience. Hydroperiod substitution for depth in the MEM yielded lower 

biomass estimates and less vertical resilience. A significant (p<0.05) plant height 

dependency on below ground biomass density and weak Allee effect was demonstrated in 

mudflat fringe plots; possibly explaining why mudflat re-colonization has not occurred 

10 years post dredge. Plant height is recommended as a sentinel indicator and potential 

replacement for continued permit monitoring rather than percent cover because of its 

positive correlation with environmental variables.  
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CHAPTER 1 

INTRODUCTION 

Salt marshes are critical components of the estuary ecosystem. They serve as 

important migratory and resident bird feeding ground and breeding habitat (Shriver et al. 

2004; Teal 1986; Keer and Zedler 2002; Bayard and Elphick 2011); fish and shellfish 

nursery habitat (Boesch and Turner 1984; Heck et al. 1995; Bertness 1984; Williams and 

Zelder 1999); and storm erosion and flooding buffer (Olff et al.1988; Warren and Neiring 

1993; Chung et al. 2004). They provide essential wastewater treatment functions by 

removing nutrients and pollutants from direct discharges and non-point sources (Giblin et 

al. 1980; Teal et al. 1982; Silliman et al. 2009;) and they act as carbon sinks/sources 

(Morris et al. 1986, 1990, 2002, 2016; Kirwan and Mudd 2012; Howes and Goehringer 

1994; Kludze and DeLaune 1994; Langley et al. 2009). 

While it has been clearly established that coastal salt marshes are a valuable, as 

well as vulnerable natural resource (Teal 1969; Callaway 2004; Valeila 2008), the 

necessity for, and timing of, the approach to human protection of this resource is by no 

means standardized. Different schools of regulatory thought and practice remain as to the 

best way to intervene, if at all. Preventable losses often do not become recognizable until 

the resource has been substantially damaged reaching a “tipping point” from which it 

may not recover (Roman and Burdick 2012). Individual species and wetland protection 

laws, “no net loss of wetlands” provisions, and case-by-case restoration/coastal resiliency 

projects are some of the current tools available for coastal wetland protection, but are not 

always successful (Neckels et al. 2002; Vernberg 1993; Brown and Veneman 2001; 

Zedler 2001, 2013). In the United States, impacts from destructive storms, such as 
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Hurricanes Katrina and Sandy, and the global threat of climate induced sea level rise, 

have elevated interest in the protection of valuable coastal shoreline, including coastal 

salt marsh (Best et al. 2018; Cahoon 2006; Ganju et al. 2017, 2019; Kearney and Turner 

2016; Norwacki and Ganju 2018; Schuerch et al. 2012; Weston 2014; Valeila et al. 

2018;). 

Increasingly the salt marsh resource is lost or damaged at a rate greater than its 

creation (Bradley and Morris 1990; Langley et al. 2009, Alizad et al. 2016). In addition to 

sea level rise, stressors threatening salt marsh survival include drought, prolonged 

inundation, subsidence or intentional diking, storm erosion and wrack deposition, 

herbivory, agricultural practices, draining and/or filling for construction or mosquito 

control, pollution, disease, and eutrophication (Deegan et al. 2007, 2013; Donnelly 2001; 

McKee et al. 2004; Mendelssohn et al.1988; Morris et al.2002; Olff et al.1988; Twilley et 

al. 2005; Portnoy and Giblin 1997; Valeila 2008; Roman et al. 1997; Nyman et al. 1993, 

1995; Reed 1995; Schneider and Useman 2005; Smith 2007; Teal 1996; Warren and 

Neiring 1993; White and Howes 1994; Wigand et al. 2018).  

Some estimates put global losses of salt marsh at thousands of hectares annually 

(Langley 2009; Stedman and Dahl 2008) and predict a 5 to 20 % global loss of coastal 

wetlands by 2080 (from 2004 starting values) due to sea level rise alone (Nicholls 2004). 

A predicted sea level rise of 1 meter by 2100 may displace all but the most protected (or 

managed) of salt marshes (Laffoley 2010) and SLR along the North Atlantic coast has 

been reported to have been 3-4 times higher that the rate of global SLR (Sallenger et al. 

2012, Parris et al. 2012, Jay et al. 2018).  In the United States, relatively recent losses are 

more defined, at 50% of original acreages or 279,000 hectares lost from the 1950’s to 
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2004 (Stedman and Dahl 2008; Kennish 2001).  In the last decade, conditions known as 

“brown marsh syndrome” or “sudden marsh and/or vegetation die-off” (partially 

explained by instances of drought and/or invertebrate herbivory, respectively), as well as 

“waffle” appearance due to interior ponding, have had negative impacts on thousands of 

hectares of salt marsh along the Gulf of Mexico and Atlantic shorelines (McKee et al. 

2004; Twilley et al. 2005; Teal et al. 1996; Valeila 2008; Smith et al. 2007; Schneider et 

al. 2005).  

It is estimated from analysis of historical maps that Massachusetts (MA) has lost 

41% of its salt marsh since 1777 (Bromberg and Bertness 2005, Bromberg et al. 2009) 

and, in the Boston Harbor region alone, only 19% of pre-colonial salt marshes remain. 

One such marsh, Ellisville Marsh, located in Plymouth, MA 40 miles south of Boston, is 

the subject of this dissertation. The productivity of its predominant primary producer, 

Spartina alterniflora, along with a broad suite of environmental variables, was followed 

in 2010 (one year before inlet dredging and presumably representing water logged 

conditions) and three years after inlet dredging in 2011-2013 (presumably representing 

better drained circumstances). The ultimate goal of this research was to inform future 

adaptive management efforts to protect the health of the salt marsh to the extent possible. 

1.1 Study Area 

Ellisville Marsh, located in Plymouth, MA (41˚ 50’25’’N, 70˚ 32’08’’W) was 

selected as a study area because from 1988 to 2003, it exhibited an approximate 3 ha loss 

of one of its principal salt marsh vegetation species, Spartina alterniflora as determined 

by comparison of 1985 and 2008 aerial photographs. This loss was ostensibly due to tidal 
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inlet narrowing (constriction of the main inlet channel providing inflow and outflow of 

tidal water) and subsequent presumed deleterious effects of periods of prolonged tidal 

inundation or water logging. 

The 28 hectare salt marsh (Figure 1.1) experiences a semi-diurnal tidal cycle and 

is located interior to a low dune, coastal beach system, and to a continually changing 

barrier sand spit formed by the action of long shore, north to south coastal sand migration 

and storm induces changes. The marsh and adjacent harbor/embayment have historically 

been protected as a salt pond, also known as a coastal lagoon, under the Wetlands 

Protection Act 310 CMR 10.33, because of historic tidal restrictions blocking its function 

as an estuary.  It sits adjacent to the Ellisville Moraine formed by a complex series of 

retreats and advances of the Cape Cod Bay and Buzzards Bay ice sheet lobes that 

occurred during the Wisconsinan glacial stage of the Pleistocene Epoch (Oldale and 

O’Hara 1984).  Since 1991, the MA Department of Conservation and Recreation (DCR) 

has managed the northern half of the marsh as Ellisville State Park. The southern half has 

been owned by the Wildlands Trust, Inc. since 2003, and managed as the Shifting Lots 

Preserve. To the east is Cape Cod Bay and to the west is Ellisville Road. In addition to 

beachfront, the marsh directly abuts steep forested upland, roadway, and residential 

property. Several small freshwater creeks also enter the marsh along its margins. 
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 Figure 1.1.  Ellisville Harbor and Marsh, Plymouth, MA (2011). Note straight 
channel path exiting marsh to Cape Cod Bay in foreground and area of bare 
mudflat in background. 
 

The marsh is of strategic interest because it is the largest salt marsh in Plymouth, 

MA.  In 2002, the State of Massachusetts Executive Office of Energy and Environmental 

Affairs (EEA) tasked the Bureau of Coastal Management (CZM), Department of Fish and 

Game (Natural Heritage and Endangered Species Program (NHESP)), Division of Marine 

Fisheries, DCR, and Department of Environmental Protection (DEP) managers “to 

discover a long-term, sustainable solution to repeated obstruction of this marsh’s tidal 

connection and protection of this critical resource” (Webber 2002). Despite, Ellisville 

Marsh being described in a survey of potential dieback sites as having “major” 

waterlogging (Smith and Carullo 2007), it was not until 2010 that federal and state 

permits were able to be obtained by the non-profit organization, Friends of Ellisville 

Marsh, Inc., to resume periodic maintenance dredging. These permits allowed dredging 

Photo – Mike Brennan  August 2011
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of approximately 2750 m3 of material from the historic entrance channel to Ellisville 

Marsh. The excavated material was used as beach nourishment or for dune construction 

over roughly a 4000 m2 area south of the channel jetty in order to avert tidal restriction 

and subsequent waterlogging, while at the same time enhancing piping plover habitat (US 

Department of the Army, File No. NAE2009; MADEP File No. SE57-2380).  Table 1-1 

lists subsequent openings and associated excavation volumes. 

It was in anticipation of this activity that this dissertation was conceived in order 

to study conditions pre and post-dredge in a scientific manner in order to provide a better 

understanding of how the system responds to the imposed changes in hydrology.  Thus, 

future management decisions might be more likely to be based on scientific evidence and 

not merely anecdotal observations. 

 

Table 1.1. Ellisville Marsh inlet openings and associated excavation volumes 
 

    
Excavation 

Date Approximate Volume 
  (Cubic Meters) 

Jan-11 2750 
Jan-12 810 
Jan-13 766 
Mar-13 1080 
Mar-15 900 

2016-2018 0 
Mar-19 1870 
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1.2 Historical Synopsis 

A historical perspective is necessary to fully understand the changes taking place 

in this ecosystem. Throughout the last 300 years, the barrier spit and beachfront have 

altered in configuration, along with tidal inlet location (Figure 1.1 through 1.3).  

 
 

Figure 1.2. (1985 aerial) Ellisville Harbor and Marsh, Plymouth, MA. Straight 
channel path exiting marsh to Cape Cod Bay and vegetated foreground. 
 

 
 

Figure 1.3. (2001 aerial) Ellisville Harbor and Marsh, Plymouth, MA without 
dredging and prior to 2003 emergency opening. Note 90-degree bends taken by 
channel due to the 450 m long barrier spit and jetty structures. 

Tidal Inlet Channel 

Barrier Spit 

Channel 
90˚ Bends 

Cape Cod Bay N 

N 
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As far back as 1770, local citizenry, lobster fishermen, Town of Plymouth, State 

of Massachusetts, and private individuals have endeavored to keep this channel mouth 

open for maintaining fishing industry, recreational boat access, and more recently, for 

protection against coastal bank erosion. In 1791, a surveyor scouting for the location of a 

waterway across Cape Cod discussed in his journal the hand dredging of the channel 

leading to this marsh performed by local inhabitants (Winthrop 1791). It states that the 

‘Ellisville’ harbor and marsh is “artificial, made by opening a pond.  The roots of trees 

found there prove it to be artificial”.  

Throughout the 1800’s, the marsh functioned as a shifting agricultural lot for salt 

hay (Spartina patens and S. alterniflora) production (Ellis 1982). Several different 

private property owners owned the marsh and had rights to prime hay areas which 

“shifted” from year to year so that each owner would have the opportunity to harvest the 

most productive areas; thus, the current name of the southern half, Shifting Lots Preserve. 

Several structures (now in various states of decline) attest to the active fishing industry in 

the area (Curtis Journal 1927). These include a boathouse and two fish houses 

(operational from 1890-1925) that were used for catch weighing and bait/pot storage for 

the lobster fishermen, Irish moss gatherers, and the cod and mackerel weir fishermen.  

In 1917, 1939 and 1951 project plans were created by the Massachusetts 

Department of Public Works to perform channel stabilization projects and/or channel 

dredging. In 1961, the Army Corps of Engineers constructed a permanent rock jetty along 

the northern side of the tidal inlet. This jetty, (as with others constructed at intervals 

along the entire coast of Cape Cod Bay), was meant to protect the channel from filling 
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due to littoral drift and sand deposition.  The result of this installation appeared to be 

additional accumulation of sand directly north of the groin/channel inlet and subsequent 

wash over of sands into the inlet mouth during storms. At some point pre-1960 mosquito 

ditches were excavated throughout the marsh, but the timing of their installation is not 

documented. 

Fishing from this harbor continued until 1987 when previously permitted channel 

maintenance dredging performed by lobstermen and the Town of Plymouth was ceased 

by a court order issued by the State of Massachusetts related to the prohibition of 

dredging in an Area of Critical Environmental Concern (ACEC). This effectively ended 

commercial fishing from this harbor. With yearly maintenance halted, on October 30, 

1991, the “unnamed perfect storm”, succeeded in almost completely blocking the already 

constricted channel mouth to Ellisville Marsh.  The State of MA acquired the northern 

half of Ellisville Harbor and marsh (1991) and in early 2003, ownership of the southern 

half of Ellisville Marsh (renamed the Shifting Lots Preserve) switched from private to 

non-profit status. Boat mooring was thereafter prohibited. 

During the 15-year time span (1988 - 2003) when no dredging took place, visible 

marsh vegetation loss occurred, amounting to about 3.2 ha, or roughly 10% of its 1985 

vegetative status (Figures 1.3 through 1.6). The loss appeared to progress with time and 

in conjunction with lengthening periods of standing water. However, there was no 

specific data that indicated waterlogging was the cause of vegetation loss and only 

limited photographic evidence of the apparently eutrophic nature of the decline. 

In late 2003, the channel mouth was opened by dredging through the barrier spit using a 

“one-time emergency opening” permit obtained by a private property owner and issued 
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by the DEP under the salt pond regulations (310 CMR 10.33).  This was issued in order 

to prevent ongoing coastal bank erosion caused by channel meandering (Figure 1.4).  

 
 

Figure 1.4. (2003 aerial, text modifications) Ellisville Harbor and Marsh, Plymouth, 
MA following emergency opening. Note area of coastal bank erosion at upper left 
corner, remnant channel, and vegetation loss in upper right. 
 
 

Prior to this reopening, the barrier spit was 450 m long and the mean semi-diurnal tidal 

range in the marsh/harbor area ranged from less than 1.0 m (prior to breaching barrier spit 

in 2003) to 1.5 m (post-breach condition) (Ramsey et al. 2006). Eventually winter storms 

accelerated barrier-spit formation and by 2008 the channel was again constricted (Figure 

1.6).  Channel dredging was reinitiated in 2010, and annual maintenance occurred 

thereafter in winters 2012 and 2013, as described in Table 1.1 (Applied Coastal Research 

and Engineering, 2017). 
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Figure 1.5. (1985 aerial, text modifications) Ellisville Harbor and Marsh, Plymouth, 
MA during pre-restriction tidal conditions. Note vegetated appearance of back 
potion of marsh (upper left). 
 

 
 

Figure 1.6. (2008 aerial, text modifications) Ellisville Marsh, Plymouth, MA. Note 
area of blue exposed mudflat in marsh interior at upper left corner and channel in 
foreground curving towards coastline. 
 

Bare mudflat formerly 
S. alterniflora 

N 

N 

 S. alterniflora vegetation 



12 12 

1.3 Research Justification  

Since 1980, the harbor and marsh have been protected as part of a larger ACEC 

by the State of Massachusetts (Bewick 1980). In addition, three non-profit organizations 

(Wildlands Trust, Friends of Ellisville Marsh, Inc. (FoEM), and the Massachusetts 

Audubon) are today legally committed to the stewardship of Ellisville Marsh, and/or 

protection of its inhabitants and salt marsh habitat. Along with the opinion that this marsh 

is part of an important cultural heritage for the area, is the knowledge that it represents 

critical nearby habitat for the wider ecosystem, including offshore, open water eel grass 

bed, soft-shell and surf clam populations; and nesting piping plovers and least tern 

populations. It provides critical storm surge dampening, coastal protection, and aesthetic 

benefits that have inherent value that is difficult to quantify. 

S. alterniflora was the primary vegetation lost during the time period from 1988 

through 2003. The claim that marsh vegetation re-colonized 14 acres in a 2-year time 

span following the 2003 emergency opening (Ramsey et al. 2006) are not substantiated. 

Because S. alterniflora is generally the first species to be affected by changes in tidal 

conditions due to its growth preference at lower elevations, it was chosen as the primary 

focus of this study. As has been the case with other New England salt marshes, (Belliard 

et al. 2016; Buchsbaum et al. 2006; Naidoo and Kift 2006; Nearing and Warren 1980; 

Pennings et al. 2005; Spicer 2007; Racehorse 1997), it was surmised that prolonged 

inundation of the Ellisville Marsh due to restriction of tidal exchange (inlet channel 

restriction), was the cause for vegetation loss. 
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1.3.1 Conceptual Framework of Study 

This field study examined an exhaustive list of variables that have been shown in 

other salt marshes to influence, alone or in combination, S. alterniflora’s distribution and 

productivity (Figure 1.7).  Interdependencies under both pre and post-dredge field 

conditions were evaluated by first looking at each environmental factor and its 

relationship to S. alterniflora productivity separately (Chapters 2 through 5) and then by 

examining interactions using multivariate statistics and modeling to provide a synthesis 

of understanding (Chapter 6). The impact of dredging across the entire marsh, not just in 

areas covered by S. alterniflora, was evaluated. 

 

Figure 1.7. Ellisville Marsh conceptual framework for study of Spartina alterniflora 
productivity and interacting variables. 
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The conceptual framework was formulated a priori to help describe productivity response 

of the Spartina alterniflora population in Ellisville Marsh to hydroperiod fluctuations, as 

well as to other environmental and climatological covariates. The conceptual framework 

for marsh function describes the interaction and influences on the ultimate productivity of 

S. alterniflora. It addresses three state variables (pore water, soil/sediment, and the S. 

alterniflora plant itself) undergoing change, two forcing functions (large arrows) of 

climate and tidal exchange, four process functions (small numbered boxes), and twenty 

measured variables (boxed variables adjacent to each bold-boxed state variable) that were 

assessed. 

1.3.2 Overall Study Hypothesis 

The overarching hypothesis for this study is that decreases in hydroperiod (length 

of time that standing water remains on marsh surface) and increased tidal range and 

excursion (due to removal of blockages of tidal flow) will enhance the productivity of S. 

alterniflora. Documentation of the conditions within Ellisville Marsh that may be 

responsible for changes in S. alterniflora abundance will help support the mandate from 

the EEA and may help identify a balanced, sustainable solution and define if, or when, 

there ought to be human intervention. Sustainable solution, in this context, meaning to 

provide hydraulic connection to the marsh for adequate tidal exchange, within reasonable 

expense and effort, and to provide minimal to no detrimental impact on this marsh and 

closely tied resources, including the coastal bank and dune system. In addition, because a 

large component of holding the dredging permits involves the ongoing expense of 

monitoring, early discernment of conditions that may predict vegetation stress responses 

to changes in marsh hydrology may prove useful.  
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CHAPTER 2 

MARSH HYDROLOGY 

2.1 Introduction 

The hydrologic conditions within a salt marsh govern most, if not all, attributes of 

the salt marsh. It influences the plants that grow, the benthic invertebrate populations, 

nekton occurrence, and the microbial induced geochemistry of the sediments. Without the 

proper hydrological conditions, the salt marsh would cease to function as such (Teal 

1986).   

Both tidal (saline) and freshwater inputs were assessed. The system is fed 

principally from tidal input, with stream and groundwater inputs considered small relative 

to the daily volumetric contribution from seawater (USGS Report SIR 2009-5063; USGS 

Circular 1338; SMAST 2005). For this reason, the primary focus was on three tidal 

factors critical to establishing and maintaining growth conditions appropriate for S. 

alterniflora.  These were the length of time seawater remains on the marsh platform 

(hydroperiod or length of inundation), its vertical excursion influenced by tidal range and 

marsh elevation, and the frequency of inundation across the marsh platform. These were 

assessed under both pre- and post dredge conditions. Monitoring changes in the barrier 

spit formation near the estuary inlet was also relevant because of its influence on channel 

and marsh hydrology, and associated roles in marsh formation (Roman and Burdick 

2012). 

All three tidal factors are known to have impact on the productivity of S. 

alterniflora as they may influence oxygen supply to the plant and cause changes in 
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sediment and porewater chemistry that affect growth, reproduction and senescence 

(Bradley and Morris 1990; Burdick and Mendelssohn 1990; Buchsbaum et al. 2006; 

Cahoon and Reed 1995; D’Alpaos et al. 2006; Kearney and Turner 2016; King 1982; 

Morris et al. 1990; Mudd et al. 2009; Olff et al. 1988; Weigert et al.1983). They may also 

be responsible for forming or altering physical barriers to growth and influencing 

competition and herbivory from resident or invasive species (Bertness and Ellison 1987; 

Burke et al. 2003).  

Research addressing salt marsh hydrology has focused on the resilience of salt 

marsh ecosystems to adapt to and withstand changes in sea level rise (SLR) (Cahoon et 

al. 2002; Crosby et al. 2016; Ganju et al. 2017; Morgensen and Rogers 2018; Morris et al. 

2002, 2005, 2013; Mudd et al. 2009; Kirwan et al. 2009, 2010, 2012, 2013; Faghherazzi 

et al. 2010; Roman and Burdick 2012).  The elevation of the marsh platform must 

increase to keep pace with increased water level in order that the marsh does not 

submerge and convert to open water (Morris et al. 2002; Mudd et al. 2009; Roman et al. 

1997). Not withstanding any continental lift in the area, increases in elevation of the 

marsh platform occur principally by deposition of both organic matter and mineral 

sediment that outpace subsidence. 

In its current dredged situation, Ellisville Marsh undergoes flood dominance 

(Ramsey et al. 2006; Applied Coastal Engineering, Inc. 2017) meaning stronger inward, 

flooding flows as compared to ocean-ward ebb flows. In this flood dominant situation, 

factors that alter ocean tidal regime, such as SLR, or astronomical and storm events can 

be the primary contributors to changes in hydrology and sediment transport. 

Anthropogenic changes such as dredging of the inlet also cause large swings in hydraulic 
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conditions. While the manipulation of water level during this study was not in this 

investigator’s control, it was possible to document hydraulic conditions one summer prior 

to (2010) and three summers following inlet dredging (2011-2013). 

2.1.1 Objectives 

This data collected provided information regarding the types of changes, their 

impact on S. alterniflora, and ultimately a marsh-wide estimation of the relationships 

between hydrology and vegetation productivity under pre- and post dredge 

circumstances.  Specifically, tidal amplitude and inundation periods calculated for each 

year of study either supported or refuted the hypothesis that dredging will increase tidal 

range and flushing and, that these increases in turn positively relate to S. alterniflora 

productivity. 

2.2 Materials and Methods 

2.2.1 Tidal Range 

Tidal height was monitored using three semi-permanent tidal gauges (or loggers) 

and a reference gauge for shore-based barometric pressure corrections (HOBO® Water 

Level Loggers, Model U20-001-01). Loggers were factory calibrated prior to purchase on 

July 13, 2009 and found to be accurate within +/- 0.03 psi for a range of applied pressures 

(0 to 30 psi). These conditions bracketed the range of pressures encountered with very 

little drift through the life of the study. 

Tidal loggers were placed inside a stilling well (7.6 cm OD, 91.4 cm long 

perforated PVC pipe) and then affixed to a buoy and anchoring system in order to remain 
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fixed in horizontal space and submerged during all tidal fluctuations to avoid vandalism 

during the summer monitoring period. All water levels were considered relative to one 

another and were not directly referenced to a vertical datum except in 2010.  Horizontal 

locations were recorded using a hand held Garmin 76 GPS unit (with wide area 

augmentation system (WAAS) 84 enabled). Loggers were placed to be representative of 

inner marsh, channel, and ocean front conditions (Figure 2.1).  In 2011, 2012, and 2013, 

the channel logger had to be moved to compensate for changes in channel path due to 

sand sedimentation, yet it remained in the predominant channel flow path. The nearby 

vertical datum used in 2010 also became buried. 

 
Figure 2.1. Locations of pressure loggers (PG) and water quality monitoring 
locations (EVH), Ellisville Marsh, Plymouth, MA 
 

 
Duration of logging was approximately 30-35 days spanning the months of July 
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between years were due to storm events necessitating early removal and differing timing 

of deployment and retrieval due to tide height and allowable access. 

Tidal range was determined by downloading logger data using a HOBO® Base 

Station Coupler and HOBOware® Pro software.  Pressure readings were converted to 

depth of submergence for each sensor after correction for barometric pressure changes, 

salinity and temperature. Mean high water (MHW) and mean low water (MLW) depths 

were subtracted for a 21-day period (inclusive of spring and neap tides) to reflect the 

mean excursion in tidal height, i.e. mean tidal range/amplitude. 

All channel and marsh readings were normalized for astronomical differences in 

tides between years using changes observed in the ocean front logger located down coast 

from the inlet. The ocean front logger was considered to represent tidal conditions 

unaffected by dredging. 

2.2.2 Hydroperiod 

Hydroperiod was measured using button-sized temperature sensors (Maxim 

Thermochron iButton sensors, Model DS1921G-F5#) to register temperatures of soil 

surface and ambient air. Factory determined accuracy of button loggers was +/- 1˚ C. 

Steep declines in soil surface temperatures (after negating any similar dips in ambient 

temperatures or precipitation events) were considered to represent contact with cold tidal 

waters and onset of tidal inundation, while more gradual increases in temperature 

reflected water subsidence (Figure 2.2).  Because water subsidence was not as clearly 

demarcated as to when water had completely retreated from the surface, a modification 

was used to indicate when water had receded. The inner marsh HOBO® pressure reading 
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that corresponded (+/- 5 min) to the timing of the observed dip in soil surface temperature 

measured with the I-button was used as the indicator for the height of water that caused 

each specific plot to be submerged and conversely, uncovered.  At the outset, loggers 

were not intentionally placed in pannes, or places that appeared to be permanently wet. 

Training data across a complete six hours of tidal fluctuation was collected for six 

locations on two different occasions in order to verify the timing of temperature dips 

indicating submergence and nearby pressure logger indicating slack to ebb tidal retreat.

 

Figure 2.2. Example temperature and corresponding pressure measurements used 
to determine hydroperiod interval (HP) at PZ10 location. 

 

Temperature loggers were placed inside tin enclosures (Specialty Bottle Supply, 

½ oz. flat tin screw top), sealed closed with boat caulk, and then affixed using zip-ties to 
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the base of each permanently installed piezometer located in the center of each 

observation plot (Figure 2.3). Because of the highly conductive nature of the tin 

enclosure, temperatures within the cases were not always representative of ambient 

temperatures because during very hot, clear days the cases warmed considerably from 

solar heating. This situation was preferable because it served to make temperature drops 

due to tidal inundation even more dramatic. 

Ninety-seven loggers were placed (Figure 2.3) and GPS locations recorded. Three 

mud flat loggers 92, 93 and 94, were later abandoned in 2011 because of piezometer 

losses due to the unstable muds, however, GPS locations allowed return for vegetation 

measurements. Two additional loggers were placed, each on the tops of two adjacent 

piezometers; one representative of a non-canopy situation (only low growing plants 

present) and one representative of a canopy covered situation (S. alterniflora plot 

coverage) to assess differences related to ambient temperature. 

Data were collected for 21-days at 20 minute sampling intervals. As with the 

pressure loggers, data were collected to encompass a complete spring to neap tidal cycle 

in the 21-day monitoring period.  Hydroperiod for each plot was determined by 

downloading temperature-logging information into comma-separated files using 

OneWireViewer™ software. Data were then screened against any similar drops in 

ambient temperature/precipitation events and then hydroperiod was determined using the 

steep decline and corresponding marsh pressure reading to calculate for each tide the 

length of time that each logger was under water. For each plot location, this time period 

was summed across the 21-day logging period (total inundation/hydroperiod) and then 

divided by the frequency of inundation (corresponding to number of individual tides) to 
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determine the mean tidal hydroperiod in minutes for each summer’s 21-day logging 

period.  Total hydroperiod was considered the sum of all spring to neap tide inundations 

in the summer 21-day period each year. 

2.2.3 Barrier Spit, Inlet and Channel Morphology 

Changes in barrier spit length or height, and relative elevations were collected at 

least twice per year at seven transects across the beachfront and barrier spit (Figure 2.4).  

Elevations were measured using Emory Rod techniques for observing and comparing 

dynamic coastal environments (O’Connell 2000).  The base of each permanent 

monument was also surveyed to the 1929 National Geodetic Vertical Datum 

subsequently covered by sand.  Due to Hurricane Sandy (October 2012) and the Nemo 

Blizzard (February 2013), transect origin posts for BT06 were lost and could not be 

reestablished in 2013 due to eroding dune. Because the decision was made by FoEM to 

maintain the inlet opening every winter regardless of length of barrier spit, the barrier spit 

was not observed to increase until 2013.  This increase was due to affects of a spring 

storm that occurred following that year’s winter dredging. 

The length of barrier spit was measured from a fixed, surveyed benchmark at its 

northernmost end to its southern-most tip at peak low tide height using a compass bearing 

of 205˚ SW.  The topographic measurements of spit surface, along with width and length 

distances, were used to track barrier spit formation. 
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Figure 2.3. Temperature logger and piezometer locations (blue and pink dots with 
various identifiers shown) within Ellisville Marsh, Plymouth, MA.  Graphic 
courtesy Town of Plymouth, MA/Kim Tower. 

 
Figure 2.4. Beachfront transect (BT) locations used to determine topography. 
Graphic courtesy of Jason Burtner/MA CZM. 
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Channel and creek morphology and the dendritic pattern of the channel 

configuration, was followed by classifying first through fourth order creeks in the marsh. 

Creeks that maintain substantial volume (and > 3 meters in width) during low tide are 

said to provide refuge for fin fish and other nekton (Williams et al. 1999) and were 

classified as 4th order, while 3rd order creeks were generally less than 3m wide yet still 

maintained substantial volume at low tide (Zedler 2001). Second order creeks were those 

with tributaries, but with little to no creek volume during low tide, while first order 

creeks/ditches were classified as those with no tributaries and dry at low tide. The 

number of each class was tallied using both aerial photography and in-field verification 

and compared across years. Finally, the distance from each plot’s central piezometer was 

measured to the closest ditch or creek edge (referred to as distance to ditch (DTD)) in 

2011 and 2013.  This measurement was helpful in understanding any erosion that might 

be occurring and the connectivity of creeks that might influence drainage. 

2.2.4 Freshwater Inputs 

Flow rates of surface water input were estimated during the summers of 2010 to 

2013, using either instantaneous measurements of cross sectional area and timed-travel 

along stream dimensions, or direct collection of pipe/culvert flow. Data were collected 

once per summer season (when possible) with the understanding that this would provide 

only a limited representation of freshwater input to the system because of the lack of 

seasonal representation and groundwater input estimation. In Fall 2012, an additional 

freshwater source was uncovered that was previously obscured by dense Phragmites 

australis growth along Ellisville Road, and its flow contribution was measured by direct 

collection only in year 2013. No measurement of groundwater input was made, other than 
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to measure water levels within the piezometers during ebb tide conditions in August of 

2010 in an attempt to discern a typical water level water level at a known tidal condition. 

2.2.5 Climate Factors 

Three sources of precipitation and temperature data were evaluated; the Plymouth 

Municipal Airport, the UMass Cranberry Experimental Station located in Wareham, MA, 

and a nearby Ellisville barometric pressure/rain gage location. As previously described, 

temperature data obtained from the ambient loggers was not considered the true 

temperature because of the heating effect caused by the tin capsules, however, it was 

useful when comparing relative increases/decreases. Water temperatures reflected real 

time and true values because these were obtained from the HOBO® pressure loggers that 

were designed for this type of data collection. Snow pack and freeze data were obtained 

from on line weather information sources (cli-MATE MRCC Application Tools and U.S. 

Department of Commerce, NOAA National Climatic Data Center 2010-2014). 

2.2.6 Statistical Analyses 

Hydroperiod and tidal range data and their residuals were normally distributed 

(Shapiro-Wilk, p > 0.01) and considered independent. They also met the classical 

statistical testing assumption for homogeneity of variance between years (Bartlett, 

K2=2.295, p=0.5262, with outlier locations PZ02 and PZ16 eliminated). In this case, a 

one-way analysis of variance (ANOVA) was used followed by a post-hoc Tukey Honest 

Significant Difference (HSD) test for mean separation (α =0.05).  With outliers included, 

there was not homogeneity of variance across years and therefore, a Welch’s ANOVA 

unequal variance test was used followed by a Bonferroni correction for mean separation 
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(α = 0.05).  Spatial semi-variograms describing the expected difference in value of 

hydroperiod between plots in relationship to a given relative orientation (northing 

distance in seconds) were produced using techniques described by Clark (1979) and the 

geoR package available in R (Ribeiro and Diggle 2001). During each summer monitoring 

period there were no storm surges that occurred during the 21-day periods of monitoring 

compared between years. Further modeling of hydrology data and its relationship to other 

ecosystem covariates is addressed in subsequent chapters. All statistical calculations and 

testing were performed using packages available from R software (2016 R Core 

Development Team, R 3.3.0). 

2.2.7 Study Limitations 

In 2010 the base elevation for the channel logger was approximately 2 feet 

NVGD29 as determined from engineering plans for channel construction. In order to 

keep the logger submerged under all tidal situations and not vandalized, the channel 

logger had to be moved in 2011 to an alternate location within the revised channel flow 

path. In 2012 and 2013 the channel flow path altered again due to sand deposition and the 

logger was moved and remained in the 2013 location in 2014. These changes make data 

from this study difficult to compare against other marsh systems where elevation 

measurements relative to mean sea level are presented. In addition, modeled hydroperiod 

and tidal range determinations were only determined for a summer spring to neap tidal 

cycle each year. There was a 2 to 4% failure rate across years of button loggers due to 

leakage of salt water into protective tin enclosures and subsequent corrosion, meaning 

that in some cases, temperature, and thereby, hydroperiod data was missing for certain 

locations. Missing data was replaced with the mean of the closest two surrounding plots.  
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2.3 Results 

2.3.1 Tidal Range 

Corrections for astronomical differences between pre (2010) and post-dredge 

(2011-2013) years were made to normalize and remove tidal water level differences 

unrelated to influence of dredging. Pre-dredge tidal range (2010) in the marsh was 

significantly smaller (ANOVA, Tukey HSD p<0.05) than post- dredge (2011-2013) and 

ranged from 1.02 m to 1.20 m (Table 2.1, Figure 2.5). These results are similar to 

previous findings (Ramsey et al. 2006) where the mean tidal range increased from 1 to 

1.5 m immediately following the 2003 emergency opening.  Tidal ranges in years post-

dredge (2011-2013) were not significantly different from one another. A slight downward 

trend in mean tidal range for the marsh was observed from 2011 to 2013. 

2.3.2 Tidal Hydroperiod 

Mean tidal hydroperiod (across 21-day observation period) for the marsh platform 

declined by 25 minutes from 2010 (145 min) to 2013 (120 min) (Table 2.1 and Figure 

2.6). Mean hydroperiod for high elevation plots (classified as such because their percent 

cover was =/<25% S. alterniflora) ranged from 98 to 129 minutes, and low elevation 

plots (>25% cover S. alterniflora) ranged from 132 to 167 min (Figure 2.6).  Hydroperiod 

was not corrected for yearly astronomical variations in tidal height as was done for tidal 

range values (whose intent was to evaluate the result of dredging on hydrology only). 

Tidal hydroperiod in 2010 and 2011 was considered significantly different (ANOVA, 

Tukey’s HSD, p<0.05) from those in 2012 and 2013 for both high and low elevation plot 

groupings. 
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Figure 2.5. Mean tidal range for marsh and channel across years. ANOVA (mean 
+/- standard deviation) Tukey HSD mean separation, bars shown with shared letters 
are not statistically different (p<0.05). Data represent a 21-day spring to neap tidal 
cycle. 
 

 
 

Figure 2.6. Mean tidal hydroperiod per tide for marsh and channel across years. 
ANOVA (mean +/- standard deviation) Tukey HSD mean separation, bars shown 
with shared letters are not statistically different (p<0.05). Outliers PZ02 and PZ16 
were removed from data set. Data represent a 21-day spring to neap tidal cycle. 
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Table 2.1. Hydrologic variables for Ellisville Marsh, Plymouth, MA 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

            
Hydrologic Variable Location 2010 2011 2012 2013 

      
Mean Tidal Range Marsh 

1.02 +/-
0.25 

1.29+/-
0.23 

1.27+/-
0.22 

1.2 +/-
0.26 

(m) 
 

     Mean hydroperiod 
(minutes per 
inundation) All plots 145 +/-39 151+/-35 122 +/-30 120 +/-30 

 

 
Low plots 162 167 136 137 

 

(n=50) 
High plots 125 129 109 98 

 
(n=42) 

    
Mean 21-day total    
hydroperiod 
(minutes) All Plots 

 
 

3282 +/- 
1789 

5560 +/-
1864 

3270 +/-
1594 

3375 +/- 
1801 

 

Low plots 
 (n = 50) 4087 6392 3935 4295 

 

High plots 
 (n = 42) 3027 4016 2055 1773 

      Mean frequency of 
inundation All plots 23 37 27 28 
(no. inundations in 21 
days) Low plots 25 39 29 32 

 
High plots 24 31 18 18 

      Freshwater 
Discharges to marsh 

Ellisville 
Road 

    (m3/day, instantaneous 
flow) 

Source 1-
creek 1210 3629 933 NA 

2004 mean annual flow 
rate  

Source 2-
spring NA NA NA 25.8 

Source 1 (creek = 801 
m3/day - SMAST 2005) 

Source 3-
culvert NA NA NA 45.9 

 

Saltmarsh 
Lane 4060 4406 3974 NA 

      
Total Precipitation 

Plymouth 
Airport 27 30.5 29.7 38.3 

(cm) (June-August) 
     Mean Air 

Temperature 
Plymouth 
Airport 22.1 21.6 21.2 21.7 

(°C)  
(June-August)           
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Superimposed spring tidal cycles for the marsh, channel and ocean front loggers are 

shown in Figures 2.7 and 2.8. The cycling reveals a change in period or timing between 

the inner marsh responses to ocean front tides.  In 2010, complete marsh emptying 

occurred 220 minutes (3 hrs. and 40 min) after low tide.  In effect, as shown in Figure 

2.7, the marsh was not entirely drained before the channel began filling, meaning that the 

emptying waters were met by the incoming tide well before the marsh drained 

maximally.  In 2011 through 2013 August months, the marsh was better drained (flatter 

curve than in 2010) prior to the ocean tide beginning to rise and the channel filling. The 

time difference between marsh emptying and ocean tidal turn in 2013 was 170 minutes (2 

hrs. and 50 minutes) translating to a 50 min (+/-10 min) decline from conditions in 2010. 

 

 
 
 
Figure 2.7.  2010 Pre-dredge superimposed tidal cycles for spring August tide. Note 
out-of-phase troughs for channel and marsh as compared to ocean tides. 
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Figure 2.8. 2011 Post-dredge superimposed tidal cycles for spring August tide. Note 
synchronicity of crests and troughs due to unrestricted inlet. 
 
 

Channel order tallies are shown in Table 2.2. The total number of creeks 

increased slightly in 2012 when the primary influent channel (4th order) split in two 3rd 

order creeks due to sand deposition. By 2013, however, the number of second and first 

order creeks had decreased by 3 from 2010 levels.  The S. alterniflora along the edges of 

lost creeks disappeared and did not re-establish. In addition, a deep relict pool abutting 

Ellisville Road filled with sediment and remained as mudflat for much of the tidal cycle 

following dredging.  

2.3.3 Freshwater Inputs 

Certain plots routinely exhibited reduced pore water salinity (Chapter 4) and nearby 

creeks exhibit stratification of freshwater above saltwater. Table 2.1 lists the 

contributions from fresh, non-groundwater sources to Ellisville Marsh. Despite some data 
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Table 2.2. Creek order tallies and barrier spit lengths for Ellisville Marsh and inlet, 
Plymouth MA (2008 through 2014).  

 

 
 

gaps, the creek traveling beneath Salt Marsh Lane appears to represent the largest above 

ground contribution to the marsh system. In addition, analyzing water budgets for the 

area, USGS modeling has shown a decrease in groundwater inflow (16% from 1985 to 

2205) to Savery Pond (upstream of Ellisville Marsh and creek source no.1 along Ellisville 

Road) due to Town of Plymouth pumping increases (Masterson et al. 2009). This creek 

volume was also reduced when pumping of Savery Pond for cranberry irrigation, harvest 

and frost protection lowers the pond level by as much as 0.5 feet (according to 2016 staff 

gauge readings) where stream flow was prohibited from exiting (personal communication 

with P. Marcoux 2016). 

2.3.4 Barrier Spit, Inlet and Channel Morphology 

Figures 2.9 and 2.10 depict the changes in beach topography that have occurred 

across years for transects closest to the estuary inlet. Some of the changes are man-made 

      
        Year   2008 2010 2011 2012 2013 2014 

        Creek Order 
      

        Fourth 
 

1 1 1 1 1 1 

        Third 
 

4 4 4 6 3 3 

        Second 
 

10 10 9 9 8 8 

        First 
 

18 18 19 19 19 19 

 
Total 33 33 33 35 31 31 

        Barrier Spit Length 
(m) 

     
    183 365 ~ 0 ~ 0 128 

    
NA 
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(such as the creation of a southern berm along the channel during winter 2011-2012 

dredging operations at Transect 5), while some are storm/wind driven.  The beach on the 

state park side of the inlet (Transects 6 and 7) experienced substantial erosion in 2012 as 

seen by the dune scarp having moved westward (Figure 2.10, Transect 6) and loss of 

BT06 and BT07 for measurement in 2013. The length of the barrier spit (Table 2.2) 

changed in 2013, as compared to the two years prior, due to storm damage that could not 

be repaired within the allowable winter dredging time period (November through early 

February). Therefore, the barrier spit was allowed to reform somewhat in 2013 and its 

length increased from the prior two years (Table 2.2). 

 

 

 
 
Figure 2.9. Beachfront topography showing erosion filling of secondary channel bed 
South of channel.  
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Figure 2.10. Beachfront topography along transect 6 showing erosion of dune Fall 
2012 and sand movement North of channel. 

2.3.5 Climate Factors 

 
 Precipitation and ambient temperature data were obtained from an onsite 

temperature data logger in a “no-canopy” location. Because the marsh surface is 

essentially flat, no specific data on aspect was necessary. PAR data was not collected. 

Upon further inspection, monthly precipitation, temperature, growing degree-days, and 

hard freeze data were considered to be important for S. alterniflora growth and the 

Plymouth County Municipal Airport Station (41.9097, -70.7294 degrees, USW00054769 

(GHCN) provided this data (SC-ACIS Version 2/NOAA 2019). The Wareham data 

source was not used due to drastic differences in weather patterns between it and 

Ellisville Marsh (even though the two locations are only 20 miles distant). Local rainfall 

gauge data was compared with the airport data and found to be similar.  The fall and 
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winter of 2012 saw four storms, two that caused beachfront erosion. Precipitation was 

highest in 2013 due to a wetter than normal June, while mean June through August 

temperatures for all years remained within two degrees of one another. 

2.4 Discussion 

At the time of study implementation there were relatively few documented studies 

that had used the iButton technique for heat tracing and submergence monitoring within a 

salt marsh (Tully 2007; McKenna 2007; Bayard et al. 2011). A recent mathematical 

approach has been posited as one method to determining hydroperiod and its relationship 

to tidal range (Kefelegn 2019), but would not have accurately represented the true lag 

following the 2011 dredge event. As compared to more expensive loggers and elaborate 

sediment elevation tables (SETs) used to determine accretion/subsidence or real time 

kinematic (RTK) GPS measurement of elevation (Cahoon et al. 2002), this study’s 

technique proved to be relatively inexpensive, although its implementation and 

interpretation is probably a comparable level of effort. 

The covering of temperature buttons with cold ocean water, colder than ambient 

air/surface soil temperature, provided a detailed analysis of the spatial and temporal 

variability in inundation, and allowed increased replication for statistical purposes. Others 

have extrapolated near inlet pressure readings from a single logger across entire reaches 

of marsh in order to determine marsh wide elevation relative to mean sea level (Ramsey 

et al. 2006, DeLaune et al. 1983, McKenna 2007). This neglects barriers to flow within 

the marsh’s interior morphology and changes in pore space-flushing dynamics, and may 

miss subtle spatial and temporal variability within the marsh interior locations.  
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The empirical relationship of spatial variability in plot hydroperiod across the 

marsh and across the four years of study changed from one of relative independence 

(HP10) to a more linear gradient (HP13) representing a trend in gradient in hydroperiod 

from east to west. This reflects the increase in tidal excursion across the marsh and 

possibly more uniform drainage (Figure 2.11). 

Mean tidal range increased by 0.2 m from pre-dredge conditions as of 2011 and 

remained elevated through 2013. In addition, the marsh drained more efficiently as 

evident from tidal cycles that had less delay and greater communication between high 

tide conditions occurring in the ocean and those in the marsh. However, the hypothesized 

decrease in mean hydroperiod following dredging lagged behind the increase in tidal 

range and was not observed until the summer of 2012. The reason for the lag in 

hydroperiod response is unclear. Mean lunar tidal differences between 2010 and 

subsequent years were +4.9 cm (2010 vs. 2011), -16.5 cm (2010 vs. 2012), and +7.9 cm 

(2010 vs. 2013). Lunar induced tidal height differences were 24 cm of each other 

between 2012 and 2013, yet the mean hydroperiods for 2012 and 2013 were essentially 

identical (Table 2.1). Therefore, there was no identifiable contribution from lunar 

variation to changes in observed hydroperiod for the observed 21-day cycles. Increases in 

constructed berm height observed in the Spring 2012 as compared to Spring 2011 (Figure 

2-9) were observed possibly meaning that more materials were removed from the channel 

inlet area during dredging in winter of 2012 than in the prior year, and that this accounted 

for increases in drainage and tidal range. Another possible explanation is that more 

efficient drainage initiated by winter dredging prior to 2011, began flushing of pore 

spaces, removing finer materials and that this change may have taken time to be evident 
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and allow better drainage. It is also possible that a significant decline in below ground 

biomass in 2012 (Chapter 3) contributed to more open pore space and less resistance to 

flow.  

 

 
 
Figure 2.11. Spatial semi-variograms for hydroperiod data. Distance in longitudinal 
seconds and semi-variance in latitudinal min 2. 
 
 

Plots with greater than 25% S. alterniflora cover experienced more frequent 

inundation than they had prior to dredging because of the sheer increase in volume of 

unrestricted tidal flow that covered the marsh surface (as shown by an increase in total 

21-day hydroperiod for the plots (Table 2.1). By 2012, higher elevation plots (</= 25% S. 

alterniflora) were inundated less frequently and for shorter time periods. 
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Creek order changes (Table 2.2) lagged even further behind the change in mean 

hydroperiod. Creek dimensions are known to respond to increased flows where typically 

additional flow and thereby, concurrent erosion, increases their width (D’Alpaos et al. 

2006) and reduces the overall complexity of the marsh interior channels. This data was 

not evaluated in a statistical sense, although it may suggest future trends towards loss of 

creek structure and conversion to more open water conditions. The documented changes 

in morphology may be useful for future analyses. 

Precipitation and freshwater inputs to the marsh hydrological situation remain a 

small component as compared to the semi-diurnal tidal cycles. Furthermore, although 

2013 had higher precipitation amounts than other years, this rainfall did not affect 

hydroperiod determination for that year’s summer season as there was only one instance 

where the loggers sensed what was apparently rainfall inundation and not tidal influx. 

Average monthly growing season (June through August) temperatures remained similar 

across years and therefore, this factor was unlikely to have contributed substantially to 

differences in vegetation (Chapter 3). 

In summary, the primary findings pertaining to hydrology are as follows: 

• The tidal range and efficiency of marsh emptying increased as predicted in 

response to dredging, whereby an increase in tidal range of 0.2 m was observed 

and the delay between marsh emptying and ocean rising was reduced by 

approximately 1 hour as measured the summer of 2011 following dredging. 

• Tidal hydroperiod, lagged for at least 7 months behind changes in tidal range 

following dredging, and possibly as much as 18 months, since the switch to a 

more drained hydroperiod was not actually measured until August of 2012. 
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Hydroperiod was reduced by 2012 for both the high and low portions of the 

marsh platform, and to a greater degree for the higher elevation plots. Mean tidal 

hydroperiods across all plots ranged from 120 (in 2013) to 151 minutes per tide 

(in 2011). Mean hydroperiod summed across all tidal cycles of the spring to neap 

cycle for all plots ranged from 3270 (in 2012) to 5560 minutes per cycle (in 

2011). 

• Inundation frequency increased for lower elevation plots and declined for higher 

elevation plots once hydroperiod shifted.  The mean frequency of inundation for 

all plots ranged from 23 (in 2010) to 37 (in 2011). 

• Beach topography changes near the channel inlet (whether storm included or 

anthropogenic) included increased erosion to the north of the channel, 

particularly observed in Spring of 2013, and filling of remnant channel to the 

south across all years.  
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CHAPTER 3 

MARSH VEGETATION 

3.1 Introduction 

 
As a predominant primary producer within the salt marsh, Spartina alterniflora 

var. Loisel (Smooth or Saltwater Cordgrass), Family Poaceae, experiences habitat 

conditions that are considered extreme for other plants. Spartina alterniflora is a flood 

tolerant halophyte capable of salt excretion, exclusion, and accumulation (Bradley 1991). 

It is an obligate wetland species growing in erect; monospecific stands (Dai and Wiegert 

1996; Crow 2000; Tiner 1987). As a perennial grass it has two possible genotypic and/or 

phenotypic expressions, reportedly (short (</= 46 cm) and tall (> 46 cm) (Tiner 1987) 

growing to heights as tall as 1.5 m (Davis et al. 2004), both having been shown to relate 

to the extent of competition, salinity and waterlogging experienced (Gallagher 1988; 

Bertness et al. 1987, 2009; Shea 1975; Deng 2007). Pollen is windborne although some 

plants have been known to self-pollinate (Davis et al. 2004). Seeds are dispersed long 

distances by travel with ocean currents and wrack deposition. Plants can be vulnerable to 

pollen loss as it settles on water.  Seed set has been demonstrated to show an Allee effect 

(Davis et al. 2004) whereby isolated plants produce limited to no viable pollen until 

rhizome growth enables further colonization. The plant uses a C-4 metabolic pathway 

and in northern latitudes experiences dormancy and some die-off of underground biomass 

(Morris 1990; Dai and Wiegert 1996). It has 5-8 principal, flat leaves, ranging from 5-20 

mm wide and 20-60 cm long with hollow stems and rhizomes ranging from 5 to 25 mm 

at the stem base (Tiner 1987). Rooting depth may extend to 60 cm in some cases. Within 
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the roots, stems and rhizomes, aerenchyma function as pathways for gas conduction and 

cooling (Maricle 2002; Teal 1966; Arenovski and Howes 1992). It is considered an 

invasive species on the west coast of the United States and in other parts of the world, 

including China (Davis et al. 2004; Buckley and Metcalf 2006; AN SQ et al. 2007).  

Abiotic (bottom-up) factors, such as the resource gradients of salinity, nutrients, 

sulfide, oxygen (examined in Chapter 4) and hydrology (Chapter 2), modify salt marsh 

architecture, function, and productivity and are some of the more well studied 

components of the estuary system influencing S. alterniflora (DeLaune et al. 1983; 

Howard and Mendelssohn 1999; Howes et al. 1984, 1986; Valiela and Teal 1974; 

Mendelssohn and McKee 1981). Challenges include; osmotic regulation and growth 

under excessive salt conditions (Cavalieri 1983, Smart 1980); waterlogging (due to sea 

level rise or other anthropogenic causes) and adaptation to coincident oxygen stress and 

sulfide toxicity (Mendelssohn et al. 1981; Morris and Dacey 1984); heat (the plant’s 

temperature optimum is between 30 to 44˚C) and drought related stresses (Twilley et al. 

2005; Morris 2002; Schneider and Useman 2005); and finally, cold stress (Idaszkin and 

Bortolus 2010). In addition, anthropogenic influences such as draining, dredging, filling, 

and pollution, have negatively impacted S. alterniflora productivity (White and Howes 

1994; Portnoy and Giblin 1997; Donnelly and Bertness 2001; Morris et al. 2002; Olff et 

al.1988; Ramsey 2006; Roman et al. 1997; Warren and Neiring 1993).  

The additive effects or synergisms between abiotic factors and biotic (top-down 

or predator driven) agents can be just as influential and the interactions more complex 

(Alberti et al. 2009; Bertness et al. 2009; Boyer and Zelder 1996; Deegan et al. 2007; 

Denno 1979; Fleeger et al. 2008; Emery et al. 2001). Top down herbivore control of S. 
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alterniflora, has been attributed to fungi, nematodes, snails, crabs, geese, and to a lesser 

extent, insects (Abraham et al. 2005; Bertness et al. 2009; Burke et al. 2003; Lamondia 

and Elmer 2008; Japoshvili and Russell 2012; Silliman 2002; Silliman and Zieman 

2001).  Mutualistic affiliation between the ribbed mussel, Guekensia demissa, and S. 

alterniflora (and in Ellisville Marsh S. patens) confers stability to underground plant 

structure as well as sheltering the mussel (Bertness 1984).  

Deegan et al. (2007, 2013) and Wigand et al. (2018) performed large-scale 

alterations of two salt marsh creeks, where ecosystem-wide nutrient manipulation and 

predator removals pointed to a possible synergistic impact contrary to expectations (i.e. 

removal of fish and addition of nutrients negatively impacted benthic microalgae and 

destabilized soil strength). Recent work in Atlantic coastal salt marshes has examined the 

lower intertidal limit of distribution of Spartina sp. in relation to the abiotic nutrient, 

salinity, and oxygen gradients and the biotic influence of crab herbivory (Alberti et al. 

2009, Bertness et al 2009). In these cases, herbivory effects outweighed bottom-up 

abiotic factors in establishing the lower elevation limit of S. alterniflora distribution.  

Control by insect herbivory has received relatively less evaluation than other 

forms of herbivory and certainly less than studies of abiotic controls (Hacker and 

Bertness 1995; Moran and Goolsby 2010; Boyer and Zelder 1996; Denno 1979).  In San 

Diego salt marshes, scale insect herbivory on S. alterniflora was unresponsive to bottom-

up nutrient supplementation of its host plant (Boyer and Zelder 1996). Still others have 

found that aphids actually prefer less productive plants due to decreased abundance of 

predators on less robust hosts (Hacker and Bertness 1995). Because there was evident 

herbivory by scale insects in Ellisville Marsh, and no other obvious evidence of damage 
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due to other herbivores (including the infamous marsh crab Sesarma reticulatum 

(Coverdale et al. 2010) which was not detected in Ellisville Marsh in the four years of 

study), the scale insect was selected as a biotic factor of interest in this research. 

3.1.1 Objectives 

Percent cover, species richness, above and below ground biomass, plant height, 

stem density, and scale density measurements helped determine for Ellisville Marsh a 

productivity status for each year’s population of S. alterniflora and other marsh 

vegetation, including Spartina patens.  Analysis of the fermentative enzyme, alcohol 

dehydrogenase (ADH) in S. alterniflora roots was performed in order to point to possible 

metabolic differences that exist during the pre- and post dredge differences in inundation 

that might be responsible for any decreased productivity. This enzyme has been known to 

increase in S. alterniflora roots subject to excessive inundation and represents a possible 

adaptation to plant inundation stress (Mendelssohn et al. 1981, 1988; Burdick et al. 

1987,1990; Maricle and Lee 2002). 

3.2 Methods and Materials 

3.2.1 Percent Cover and Species Richness  

Percent cover estimates at the plot level were made for each of ninety-four 

vegetation plots placed at 60-ft intervals along five transects during the first two weeks of 

August for each study monitoring year (2010 through 2013) and during following years 

as part of permit monitoring conditions. Transects were perpendicular to the main 

channel flow and their origins were randomly assigned. Transects were located 92 m 
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apart from one another and their lengths varied according to accessibility and other marsh 

features.  

A 1.0 m2 PVC quadrat frame with central ring was overlain on each permanently 

installed piezometer and then a compass heading of 50˚ NE was used to align quadrat 

frame edges accordingly. Visual estimates of the mid-point of a range of percent cover 

classes was used to estimate coverage according to techniques previously outlined by 

Carlisle et al. (2002) for salt marsh monitoring. Tiner (1987) was used as the taxonomic 

authority with the exception of Salicornia europaea being also classified as Salicornia 

depressa due to a taxonomic change. Estimates of percent wrack, mud, and dead, but 

rooted, plant coverage was also made for each plot. Photographic record of each plot was 

also kept. Relative abundance and species richness for the marsh platform as represented 

by the plots was tallied and compared across years. 

An additional inventory of plant species within and around the marsh margin was 

performed on three occasions (April 2, July 1, and September 15, 2011) with the expert 

assistance of Irena Kadis/Arnold Arboretum. Species were photographed and categorized 

into an online database for future use. As part of this effort, invasive species were 

identified and a measurement made of the invasive form of Phragmites australis patch 

along Ellisville Road.  This patch was measured in successive years to determine its 

aerial extent.  Equally important, was identification of the invasive Spotted Knapweed 

(Centaurea maculosa) amongst dune grasses immediately adjacent to salt marsh. 

A land cover change assessment was performed to discern plant cover on a marsh 

wide scale.  Three high resolution (0.15 m) aerial infrared orthophotographs of Ellisville 

Marsh were commissioned by the Friends of Ellisville Marsh, Inc. and flown by Col East, 
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Inc., N. Adams, MA: September 13, 2008, 8:25 am, September 9, 2011, 14:55 pm, and 

August 16, 2018, 10:30 am. All three photographs were taken within 1 hour of low tide 

and flown using the same photo id control points. A digital terrain model was created 

using a triangular irregular network and the images were orthorectified and then projected 

to North American Datum (NAD) 1983 Massachusetts State Plane Mainland FIPS 2001 

Feet.   

Each aerial was assessed independently from one another and a supervised 

classification analysis conducted using ArcGIS Info v10.  Supervised classification used 

the photos’ red/blue/green wavelengths to differentiate between the features within the 

image. Following classification, the classes were compared to field notes and plot cover 

makeup to determine the identity of plant species or the geological feature being 

observed.  Each category was confirmed by zooming in to the original aerial photo to 

confirm the designation determined by the classification model and where there were 

uncertainties as to classification, field reconnaissance was used to confirm the cover 

class.  Resulting classifications were combined where appropriate, and turned into maps 

of the land cover for each pixel. Pixel numbers were then translated into area estimates of 

each land cover classification. 

3.2.2 Above- and Below Ground Biomass  

Above ground biomass (AGB) samples were harvested from across the marsh 

platform during the first two weeks of August in each monitoring year and considered to 

represent peak standing biomass (Milner and Hughes 1968). Below ground biomass 

(BGB) was collected from September through October and represent low, end of the year 

amounts where turnover is occurring. 
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For AGB harvests, a 17.8 cm diameter hoop (0.025 m2) was haphazardly thrown 

into one of each successive plot quadrants within the larger 1 m2 plot (one clockwise 

quadrant rotation each year), the enclosed stem and leaf material was cut to ground 

surface, placed in labeled paper bags and oven dried at 60˚ C (ABGBD) before weighing 

to constant weight (+/- 0.1 g). Dead and live stems were counted to obtain the total stem 

density in the hoop area, but dead stems were removed from each harvest before drying 

and weighing. 

 BGB was collected using a 7.6 cm wide (at top opening) by 20 cm long 

(contained 830 cm3 water volume when measured) tapered cylindrical corer which was 

placed just outside of the plot frame on the edge closest to the AGB harvest circle, 

pushed into the soil until the top of the opening was at ground surface, retracted and the 

biomass core pushed out into a labeled, perforated plastic baggie. The cores were then 

washed within the baggie in a continuous stream of saltwater to remove adherent non-

root organic matter, sands, clays and silts, yet trap root material prior to freezing. Frozen 

cores were transported to the laboratory, thawed, air dried followed by oven drying at 70˚ 

C (BGBD) and weighed until constant weight (+/- 1 g) was obtained. No attempt was 

made to distinguish live versus dead root biomass, or to separate rhizome material, 

because of the interwoven and complex nature of the cored material.   

3.2.3 Plant Height and Stem Density 

Spartina alterniflora height and stem density measurements were made at the 

time of each plot’s above ground biomass harvest and in 2014 as part of continued 

monitoring. The height of the entire plant (PH) from culm/stem emergence from the soil 

to the tip of the inflorescence (or lacking flowers, to the tip of the tallest leaf) was 
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measured for the three plants judged to be the tallest in each plot.  As stated previously, 

stem density (SD) counts recorded the number of live and dead stems in each 17.8 cm 

diameter (0.025 m2) hoop harvest. 

3.2.4 Herbivore Counts 

The scale herbivore, Haliaspis spartinae, was visibly present in high number on 

many S. alterniflora plants throughout the salt marsh. Their greatest visibility was during 

the time period when below ground biomass samples were collected (September through 

October). During this time, three plants were haphazardly selected from each plot and the 

lowest leaf blade removed, placed into plastic containers and transferred to the field 

laboratory.  Using a dissecting scope, the density of the scale was estimated by counting 

the number of white tests (scale coverings) per 1 cm2 of leaf surface area in the area of 

most dense appearance. During this analysis, a parasitic wasp, Encarsia ellisvillensis, was 

identified for the first time and its occurrence quantified (Japoshvili and Russell 2012). 

To learn if the scale insect was affecting macro and micronutrient concentrations 

within the leaves, a limited analysis (n=3) of un-infested and infested leaf tissue was 

performed by the UMass Agricultural Extension Plant Tissue Laboratory, Amherst, MA 

following 2013 tissue analysis methods. 

3.2.5 Root Alcohol Dehydrogenase (ADH) Enzyme and Protein Analysis 

Alcohol dehydrogenase is known to play a role in anaerobic metabolism in S. 

alterniflora and S. patens (Mendelssohn et al. 1981, Burdick and Mendelssohn 1987, 

1990; Maricle et al. 2006).  It catalyzes the reduction of acetaldehyde in the presence of 

its coenzyme nicotinamide adenine dinucleotide (NADH) during fermentation to form 
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ethanol. Because ADH has greater affinity for ethanol, as opposed to acetaldehyde, the 

reverse reaction of oxidation of ethanol was followed in this assay (Crawford 1966). 

Two buffer systems have been described in the literature (sodium pyrophosphate 

and TRIS-HCl) (Bergenmeyer 1963; Crawford 1966; Benz et al. 2007; Wang et. al. 

2009). However, because the TRIS-HCl buffer (pH 8.5) appears in the more recent 

literature (Benz 2007; Jiang and Whang 2006) and was shown when comparing different 

buffer systems to yield the more active preparation (Crawford 1966), it was used for this 

experimental protocol (Appendix A). The pH optimum for the oxidation of ethanol is in 

the alkaline region (pH 8.5), and for its reduction, near neutrality. The reaction velocity 

was determined by the method of Vallee and Hoch (1955) in which the rate of 

absorbance change at 340 nm resulting from reduction of NAD+ to NADH was measured 

using a temperature controlled UV spectrophotometer (Thermo Electron Corp., 

Spectronic Genesys 2). One unit ADH activity reduces one µmol NAD+ to NADH per 

minute at pH 8.5 and 25˚C.  

Triplicate root samples for ADH analysis were collected randomly as sub-samples 

from washed below ground biomass root cores. Root material selected for analysis was 

white and turgid, as opposed to black and flaccid appearing. Care was taken to avoid 

rhizomes being incorporated into the sample. Selected sub-samples were weighed and 

immediately placed into pre-labeled aluminum foil packets, frozen on dry ice for 2 to 3 

days prior to transfer to a -80˚ C freezer to await analysis. Not all root sub-samples were 

analyzed, instead, a random selection was chosen across the spectrum of hydroperiod. 

Thirty-seven locations were analyzed in triplicate (111 analyses) for both ADH and 

soluble protein.  
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Standard curves were prepared fresh for each set of analyses (generally weekly) 

and standard addition was performed to determine any possible enzyme inhibition. ADH 

activity was normalized against soluble protein content of the tissue and fresh weight in 

order to allow comparison to literature. The Bradford assay (Appendix A), using bovine 

serum albumin as a standard, was used for protein quantification at 595 nm.   

3.2.6 Statistical Analysis 

Apriori power estimates were performed in 2009 using training surveys 

performed by this investigator and individuals from the MA CZM to ascertain an 

appropriate sample/plot number. Regional standards (Neckels and Dionne 1999, 2002) 

were also consulted for determining appropriate plot number. Apriori power estimates 

were 87% for percent cover data and species abundance using 90 plots. Data residuals 

were from a normal distribution for ABGD, BGD, PH, and SD (Pearson’s chi-square test, 

α=0.05), however, ADH data and herbivore counts required log transformation. Percent 

cover data were converted to proportions and arc sin square root transformed (with 0’s 

replaced by ¼ divided by n where n was the total number of possible species) to try to 

meet normality, but was unsuccessful. Untransformed relative abundance data were 

therefore used for the ANOVA across years.  Data did not meet strict requirements for 

homogeneity of variance across years in every case so a Welch correction for non-

homogeneity in one-way testing was used. Due to the plants’ perennial nature, samples 

were considered repeated measures of possibly the same clonal plant material over time. 

Spatially, plots were considered independent of one another. Data for PH were normally 

distributed and met requirements for homogeneity of variance across years in 4/5 

univariate tests. 
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3.2.7 Study Limitations 

Because Ellisville Marsh is essentially the only salt marsh in Plymouth County of 

any appreciable area, and because of its complex history as a salt pond or coastal lagoon 

and a salt marsh, it was difficult to identify any nearby reference location with a similar 

history for simultaneous study of vegetation. As determined when evaluating temperature 

and precipitation records between Plymouth and Wareham (located 20 miles away from 

Plymouth) there was substantial variation in these two variables making use of vegetation 

data from distant marshes not entirely relevant. Therefore, a restoration index, weighing 

change at “control” versus “restoration” sites as has been used to identify success of 

restoration (Roman and Burdick 2012; Zedler 2001), could not be calculated. Finally, due 

to freezer malfunction, 2010 ADH samples were prematurely thawed and enzyme activity 

not analyzed and only a comparison of 2011 versus 2012 samples was performed. 

3.3 Results 

3.3.1 Percent Cover Comparisons 

Percent cover summary statistics are shown in Table 3.1. Species with less than 5 

occurrences each year were considered rare and removed from the comparisons (11 out 

of 17 classifications) (Table 3.2). The percent cover data were converted to relative 

abundance proportions (essentially very similar values due to no canopy overlaps) to test 

differences across years using ANOVA (Table 3.3).  Short S. alterniflora declined across 

all years from 2010 levels (ANOVA, Tukey’s HSD, p= 0.0342), whereas Salicornia 

depressa increased in 2011 (p=0.005) from 2010 levels, but then reverted to 2010 levels 
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in 2012 and 2013. Finally, the relative abundance of bare (p<0.1) and wrack areas 

(p<0.05) increased from 2010 levels in 2012 and 2013 (Table 3.3). 

In the early spring 2012 (prior to that year’s growing season), it became obvious 

that grasses from the prior year (2011) remained dead and standing (Figures 3.1 and 3.2) 

throughout the salt marsh. This occurrence was not typical for the marsh (based on visual 

observations since 2003) and dead vegetation remained attached throughout the summer 

and fall.  While there was a dip in mean percent tall S. alterniflora (live) cover in 2012 

from the prior two years, it was not considered statistically significant.  Similarly, 

although there appeared to be a steady decline across all years in mean percent cover of 

S. patens, it was not considered significant. However, landscape and photographic data 

appear to radically demonstrate this change due to large die-offs of S. patens on the north 

side of the channel (Figure 3.3). 

 

 
 
Figure 3.1. Appearance of dead standing marsh vegetation during Spring 2012. 
Plot 85 and plot frame in foreground. 
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Figure 3.2. Appearance of Spartina alterniflora in Plot 69 - August 2011 (left) and 
August 2012 (right). Prior year’s vegetation appears dead and still standing 
affecting 2012 season’s growth. 
 
 
 
 

 
 
 
Figure 3.3. Area of Spartina patens die-off the summer of 2014 on the north side of 
the channel on Ellisville Harbor state park property.
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Table 3.1. Percent cover summary (n=94), SAS short and SAT tall S. alterniflora, SP 
S. patens, SD Salicornia depressa, JG Juncus gerardii, DS Distichlis spicata 
 
	
  	
   	
  	
   	
  	
   	
  	
   	
  	
   	
  	
   	
  	
   	
  	
  
Species/Condition Statistic       YEAR     

   
2010 2011 2012 2013 2014 

Short 
  	
   	
   	
   	
   	
  Spartina 

alterniflora Mean 
 

5.41 2.99 0.71 0.96 0 

 
Sd 

 
17.95 14.2 3.22 7.87 0 

 
Se 

 
1.85 1.46 0.33 0.81 0 

Tall 
       Spartina 

alterniflora Mean 
 

40.23 45.43 36.06 51.55 46.82 

 
Sd 

 
42.73 41.35 3.14 39.3 34.19 

 
Se 

 
4.41 4.26 3.73 4.05 3.53 

        Spartina patens Mean 
 

31.11 28.17 27.69 21.95 15.83 

 
Sd 

 
40.73 38.12 39.58 35.93 27.65 

 
Se 

 
4.2 3.93 4.08 3.7 2.85 

        Juncus gerardii Mean 
 

5.1 4.11 2.51 2.83 2.18 

 
Sd 

 
19.18 16.75 12.91 14.37 12.64 

 
Se 

 
1.98 1.73 1.33 1.48 1.3 

        Distichlis spicata Mean 
 

3.57 5.26 5.73 5.37 7.69 

 
Sd 

 
13.8 18.03 18.68 18.28 20.52 

 
Se 

 
1.42 1.86 1.93 1.88 2.11 

        Salicornia depressa Mean 
 

0.05 2.66 0.68 0.52 0 

 
Sd 

 
0.23 10.61 2.51 2.26 0 

 
Se 

 
0.02 1.09 0.26 0.23 0 

        Bare Mean 
 

8.77 8.93 12.14 10.21 17.06 

 
Sd 

 
17.77 16.46 21.78 18.3 20.17 

 
Se 

 
1.83 1.7 2.25 1.89 2.08 

        Wrack Mean 
 

1.15 1.5 2.82 2.18 2.83 

 
Sd 

 
7.63 7.87 12.52 14.01 14.37 

 
Se 

 
0.79 0.81 1.29 1.44 1.48 
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Table 3.2. Genus species detected and species richness in Ellisville Marsh, MA. 
Asterisk indicates species considered rare (detected < 5% frequency of occurrence). 

  
 
 
Table 3.3. Means and ANOVA results for marsh wide ARCSINSQRT transformed 
abundance (percent cover) and Haliaspis spartinae counts across years. 
(ANOVA, Tukey HSD separation of means, α = 0.05.) 
              

  
Year 

                                    2010 2011 2012 2013 2014 
 Species     

 
    p-value 

       Tall S. 
alterniflora a a a a a 0.066 

Mean 40.2 45.4 36.1 51.6 46.8 
 Short S. 

alterniflora a a b b b 0.0014 
Mean 5.4 2.9 0.7 1 0 

 Spartina 
patens a a a a b 0.0041 

Mean 31.1 28.2 27.7 21.9 15.8 
 Salicornia 

depressa a b b ab b 0.0014 
Mean 0.05 2.7 2.5 0.52 1.7 

 BARE a a a a b 0.0007 
Mean 8.8 8.9 12.1 10.2 17.1 

 WRACK a a a a b 0.0285 
Mean 1.1 1.5 2.8 2.2 3.8 

 
       Haliaspis 
spartinae ab bc bc c na 0.0274 

#/cm2 Mean 66 25 86 50 NA   

Genus species Species Richness
(*rare) (year - #)

Spartina alterniflora (tall) 2010 - 14 species
Spartina alterniflora (short) 2011 - 14 species

Spartina patens 2012 - 15 species
Distichlis spicata 2013 - 14 species

Juncus gerardii 2014 - 14 species
Salicornia depressa

Salicornia virginica *
Limnomium nashii*

Iva fructescens*
Scirpus robustus*

Agrostis stolonifera*
Plantago maritima*

Triglochin maritinum*
Spergularia marina*

Solidago sempervirens*
Atriplex patula*
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Results of the landscape scale cover classification are shown in Figures 3.4 and 

3.5, and Table 3.4. The infrared aerial photos were taken September 3, 2008 at 8:25 am 

and September 9, 2011 at 14:55 pm, and August 16, 2018, 10:30 am (all three within 1 

hour of low tide). When comparing the 2008 (2 years prior to dredge) and 2011 (one year 

following dredge) orthophotographs, differences in shadow and color intensity were 

noticeable. This was primarily due to upland features creating shadow, as well as the time 

of day variability in transpiration as indicated by different intensity of pinks and reds. 

Also, because the pre-dredge photo was taken in 2008, 2 years before the dredging in 

winter 2010-2011, the changes in appearance represented in 2011 cannot be entirely 

attributed to dredging, nor can the 2011 photo be considered as a reduce hydroperiod 

condition as discussed in Chapter 2. The 2018 photo was shot digitally, while the 2008 

and 2011 were taken using film.  Because of this a wider spectrum was available for 

analysis with the 2018 photograph. 

Despite most shadow being subtracted from each image, residual border shadows 

were likely counted as water. Differences in photo time of day, early morning versus mid 

afternoon, meant different spectrums used for classification. Therefore, the ability to 

discern Juncus gerardii, Iva fructescens and by default, sparsely interspersed S. 

alterniflora, as completely separate species was compromised (particularly in the 2018 

photo). The estimated area occupied by the combination of the two high marsh plants, S. 

patens and Distichlis spicata is appropriate, as were the mudflat and sand areas because 

their color classifications did not change between years. Only 4 out of 94 plots (4.3%) 

identified to be S. alterniflora by interpretation were considered incorrectly classified 

when 2008 and 2011 results were ground-truthed in 2013. The unvegetated (UV) to 
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vegetated (V) indices (I) for each year were calculated by summing open water, sand and 

mud areas as representative of “unvegetated” and summing all other classification to 

represent “vegetated” so that the UVVI could be calculated (Table 3.4). 

 

Table 3.4. Ellisville Marsh supervised land cover classification comparisons using 
IR orthophotographs - September 3, 2008, September 9, 2011, and August 16, 2018. 
 
 
  2008     2011     2018   

2008 Land 
Cover 

Pixel 
Count 

Square 
Meters 

2011 Land 
Cover 

Pixel 
Count 

Square 
Meters 

2018 Land 
Cover 

Pixel 
Count 

Square 
meters 

Water 3216034 72361 Water 3012914 67791 Water 3217473 72393 
Spartina 
patens/ 

Distichlis 
spicata 3530284 79431 

Spartina 
patens/ 

Distichlis 
spicata 1956175 44014 

Spartina 
patens/ 

Distichlis 
spicata 3838106 86357 

Spartina 
alterniflora/ 

Juncus 
gerardii 2249424 50612 

Spartina 
alterniflora/ 

Juncus 
gerardii 3694762 83132 

Spartina 
alterniflora/ 

Juncus 
gerardii 4197129 94435 

Iva 
fructescens/ 

Juncus 
gerardii 2003084 45069 

Iva 
fructescens/ 

Juncus 
gerardii 2486129 55938 

Iva 
fructescens/ 

Juncus 
gerardii 104563 2353 

Mud 1992337 44828 Mud 1561795 35590 Mud 1363595 30681 
Sand 231197 5202 Sand 490582 11038 Sand 546825 12304 
Total 13222360 297503 

 
13202357 297503 

 
13267691 298523 

     UVVI        0.70     0.62     0.63 
         

3.3.2 Spartina alterniflora Productivity Metrics 

Summary productivity statistics were calculated for all plots with greater than 

25% S. alterniflora percent cover present in any year (minus the outlier locations PZ2 

and PZ16 determined during the hydrology analysis). Descriptive statistics (mean, range 

and one standard deviation) for each year’s ABG dry (ABGD), BGB dry (BGBD), plant 

height (PH), and stem density (SD) are presented in Tables 3.5 and 3.6.  Plots that had 

intermittent S. alterniflora present were kept in consideration and when the plant was not 
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present, their measurements were reported as zero %. Results of repeated measures 

ANOVAs are presented in Figures 3.6 and 3.7. 

 

 
 
 
Figure 3.4. Marsh vegetation cover comparisons 2008 and 2011. Red sample dots 
within channel centers represent water quality/pressure logger locations, all others 
are vegetation plots. Graphic courtesy of Lori Pelech/UMass Department of 
Ecological Conservation. 
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Figure 3.5. Marsh vegetation cover comparisons 2018. Graphic courtesy of Kate 
Fickas/UMass Department of Ecological Conservation. 
 
 
Table 3.5. Spartina alterniflora biomass summary statistics. ABGD and BGBD refer 
to above and below ground biomass dry weight, respectively. Numerical designation 
in column heading refers to abbreviated year of harvest (e.g. 10 = 2010). 
 
 

 
ABGD10 ABGD11 ABGD12 ABGD13 BGBD10 BGBD11 BGBD12 BGBD13 

units 
g dry 
wt./ 

g dry 
wt./ 

g dry 
wt./ 

g dry 
wt./ 

g dry 
wt./ 

g dry 
wt./ 

g dry 
wt./ 

g dry 
wt./ 

 
0.025m2 0.025m2 0.025m2 0.025m2 830 cc 830 cc 830 cc 830 cc 

         nobs 56 56 56 56 56 56 56 56 
min 0 4.9 0 10.1 5.1 6.2 0 4 
max 51.8 37.2 36.2 42.4 144.1 83.3 54.8 92.4 
mean 19 16.4 12.8 22.8 46.6 35.5 23.3 37.7 
med 18.4 15.1 12.9 21.3 44.1 33.4 24.6 34.6 
sd 10 8 7.9 7.8 25.1 16 13 21.2 
se 1.3 1.1 1.1 1 3.4 2.1 1.7 2.8 
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Table 3.6. Spartina alterniflora plant height (PH) and stem density (SD). Numerical 
designation in column heading refers to abbreviated year of harvest (e.g. 10 = 2010).  

 
 

 
PH10 PH11 PH12 PH13 SD10 SD11 SD12 SD13 

units cm cm cm cm # per # per # per # per 

     
0.025m2 0.025m2 0.025m2 0.025m2 

nobs 56 56 56 56 56 56 56 56 
min 17.8 17.8 49 41.4 0 0 0 0 
max 144.8 173.5 133.9 165.1 21 29 13 25 
mean 76.8 87.5 83.2 97.4 9.9 9.6 5.6 10.1 
median 71.1 89.3 84.6 95.5 10 8.5 5 9 
sd 28.5 25.5 16.5 22.8 5.2 5.8 3 5.2 
se 3.8 3.4 2.2 3 0.7 0.8 0.4 0.7 

 

There was a significant effect of year for all productivity measures (two-way 

repeated measures ANOVA, p<0.001) (Figures 3.6 through 3.7).  SD, ABGD, and BGBD 

were lower in the year 2012 as compared to the other years. The 21-day total hydroperiod 

had an effect on both PH (p <0.001) and BGBD (p < 0.1). Below ground biomass for just 

S. alterniflora containing plots was related to hydroperiod, although the relationship was 

not as strong as with plant height.  

Closer examination of the plant height (PH) relationship to hydroperiod revealed 

a positive, statistically significant, linear relationship with increases in 21-day total 

hydroperiod (Figure 3.8).  However, there are likely to be other influential factors as the 

relationship was weak (R2 = 0.12). Use of PH as a sentinel variable indicating marsh 

status may have merit if a stronger relationship to an increased list of multiple covariates 

is developed (Chapter 6). 
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Figure 3.6.  Mean above and below ground biomass interaction with total 21-day 
hydroperiod for just plots containing >/= 7% cover Spartina alterniflora. Repeated 
measures ANOVA both ABGD and BGBD ***year (p<0.001), BGBD *hydro 
(p=0.0788). 
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Figure 3.7. Mean stem density and plant height interaction with total 21-day 
hydroperiod for just plots containing >/= 7% cover Spartina alterniflora. Repeated 
measures ANOVA both SD and PH *** year (p<0.001), PH *** hydro (p<0.001) and 
year: hydro * (p=0.029). 
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During 2011, the mean plant height for S. alterniflora plots was significantly 

higher than pre-dredge conditions, and this factor was positively correlated with 

hydroperiod, perhaps representing the wetland plant’s ability to elongate to reach light 

during higher water conditions or its response to short-term fertilization by suspended 

sediment as a result of dredging. The additional plant height possibly contributes to an 

increased ABGB and a decreased root to shoot ratio although fertilization effects were 

not specifically studied. In other frequently flooded plants (such as rice and creeping bent 

grass) the elongation that occurs in response to long periods of flooding does not increase 

biomass, rather stems become less robust structurally and cannot support the plant’s 

height gain resulting in lodging (Kende et al. 1998, Jiang and Wang 2006). In 2011, the 

obvious lodging of S. alterniflora that occurred was in certain areas immediately 

alongside ditches. Here plants were observed to grow very tall and by the end of the 

growing season were prostrate. This necessitated that certain locations (PZ10 and PZ16) 

be removed as outliers from analysis. Even with outliers removed, in 2011 the maximum 

heights were the highest as compared to all other years (Table 3.6). 
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Figure 3.8. Linear regression of plant height to 21-day summed hydroperiod for all 
four years of observation, n=224 (y~4.65x10-3x+ 65.6, R2 = 0.12, p=1.19x10-7), 95% 
confidence intervals. 

 

Under 2010 pre-dredge conditions, if both low and high elevation plots are 

considered, root/rhizome to shoot ratios calculated are higher than post-dredge, possibly 

meaning that there is relatively more root “stock” available from previous years’ growth 

and that less of the plant’s energy was put into aboveground stem and leaf growth in the 

waterlogged condition. Due to the plant’s perennial nature, the AGBD formed in one year 

might be unrelated to the hydroperiod of the current year, and more likely related to 

conditions imposed by the prior year’s hydroperiod and the prior year’s BGBD. 

Therefore, it was reasoned that comparing the ABGD to the prior years hydroperiod 
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might improve the linear relationships. This was the case for 2010 to 2011 (R2 =0.19, 

p=0.00071), but not for any other pairing (Figure 3.9). 

 
 

Figure 3.9. Linear regression with 95% confidence intervals of hydroperiod against 
above ground biomass (ABGD) lagged one year for Spartina alterniflora containing 
plots. Only the lagged relationship between 2010 and 2011 was considered 
significant (p=0.0007, R2=0.19). 

3.3.3 Herbivore Analysis 

A difference in mean H. spartinae count across years was present (ANOVA, 

Tukey’s HSD, p<0.05) with 2013 abundance less than 2010 (Table 3.3).  Figure 3.10 
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shows the apparently chlorotic and damaged appearance of leaves with Haliaspis present. 

Tissue analysis of leaves (n=3) with and without H. spartinae present showed no 

statistical difference (α=0.05) in nitrogen content (1.65% +/- 0.2) or other measured 

macronutrient, except for copper. The mean concentration of copper (Cu) in infested 

plants (279  +/- 20 ppm) was roughly 30 times higher than in plants without the insect 

test (9 +/- 5 ppm). All leaves analyzed were +/- 1.8 cm in height difference from one 

another. 

 
 
Figure 3.10. Haliaspis spartinae (white scale coverings) on surface of Spartina 
alterniflora leaves. Plot No. 36 - September 2010. 

3.3.4 Root Alcohol Dehydrogenase (ADH) and Soluble Protein 

Because pre-dredge ADH results were not available for 2010 due to freezer 

failure and inadvertent sample thawing, a comparison between pre-and post dredge 

values was not made. However, root ADH from plots in 2011 and 2012 were assessed to 

try to determine any relationships between hydroperiod and ADH activity. ADH 

concentrations required log transformation for residuals to meet the assumption of 
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normality and sample populations had homogeneity of variance for the two years. Mean 

ADH concentrations for all locations sampled ranged from 9 to 188 µmole NAD+ 

reduced (ADH activity units)/µg soluble protein-hr., also expressed as 116 to 6241µmole 

ADH activity/g fresh wt-hr. Addition of ADH (0.75 ADH units/ml) to extracts with little 

to no ADH activity yielded 100% to > 100% recovery in all cases (n=3) meaning enzyme 

inhibition did not occur in those assays. 

There were no significant linear relationships between hydroperiod (21-day total 

or mean) and root AHD level; however, there was a significant difference in mean root 

ADH concentration (ANOVA p=0.0449) when compared across years (Figure 3.11) with 

2011 samples having significantly higher ADH activity than 2012 samples. 

 
 
Figure 3.11. Spartina alterniflora root alcohol dehydrogenase activity. ANOVA 
(mean +/- sd), bars shown with shared letters are not statistically different (p<0.05). 
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3.4 Discussion 

Both above and below ground biomass ranges were within those typical for New 

England salt marshes (200-1300 g dry wt./m2/yr. for ABGB and 3620-7547 g dry 

wt./m2/yr. for BGB) (Steever 1976; Ellison et al. 1986) (Table 3.5). The range of root and 

rhizome (BGB) to shoot (ABGB) ratios (RRTS) after adjusting to a meter squared basis 

were on the low side, ranging from means of 1.75 (post dredge) to 3.15 (pre-dredge) as 

compared to those reported for marsh organ experiments (2 to 12) (Morris and Currin 

2013; Morris 2002). Plant heights were also typical of northern salt marsh S. alterniflora 

vegetation, (30-200 cm) (Steever 1976), as were stem densities with higher stem densities 

in plots with short S. alterniflora (Morris 2002) (Table 3.6). 

The productivity per unit area of S. alterniflora appears to have declined in 2012 

as indicated by the statistical decrease in BGB and PH (Repeated Measures ANOVA,   

p< 0.001). In the summer of 2011, BGB and PH had the highest correlation coefficient 

(Person’s r =0.51) of all variables. The dip in plot percent cover in 2012 also mimics 

declines in these and other productivity indicators. There was a declining trend in the 

other productivity responses (ABGD and SD) across years as shown on the repeated 

measures interaction plots (Figure 3.6 and 3.7). 

The increased drainage, as shown by shorter hydroperiod beginning in 2012 

(Figure 2.4) and delay in response to increased tidal range, may have contributed to these 

changes. Because the plant is perennial and the prior year’s rootstock determines, in part, 

the efficacy of the following year’s growth, if the plants did not senesce or go through 

dormancy properly in the fall of 2011 this may have caused poorer growth in 2012.  Hull 

et al. (1976) have documented in S. alterniflora substantial transfer of photosynthate to 
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the below ground biomass component upon the onset of aboveground senescence in the 

fall. If this process was interrupted due to dredging effects, this could account for the 

poorer growth of below ground biomass in 2012. It could also be a possible reason why 

average hydroperiod did not decline until 2012 as the reduced below ground biomass 

component in 2012 allowed more open pore space for flushing and faster drainage.  

It is notable that the total percent cover of the short ecophenotype of S. 

alterniflora declined significantly since dredging. The short form is generally associated 

with more waterlogged conditions (Maricle 2006; Burdick and Mendelssohn 1987). High 

elevation marsh plots dominated by S. patens, Juncus gerardii, and Distichlis spicata 

maintained their same species assemblages, although landscape cover comparisons did 

show a decline in the S. patens/D. spicata populations from 2008 to 2011; the length and 

frequency of inundation for high marsh plots has been reduced since 2011-2012.  Plot 

percent cover estimates did not show a significant decrease in S. patens until 2014. 

Statistical increases in percent cover of bare and Salicornia depressa could be interpreted 

to mean that the elevation of these plots may be becoming lower across time. S. depressa 

is also an early colonizer of bare areas (Tiner 1987). 

Re-colonization with S. alterniflora of the mudflat along Ellisville Road that 

suffered vegetation losses has not been evident, nor was there any large acreage re-

growth of this species as alluded to after the 2003 opening (Ramsey 2006). In addition, 

although not part of the monitored plots, the bordering Phragmites australis patch along 

Ellisville Road has increased in area since 2010, likely due to stagnation of freshwater 

along the roadside related to road subsidence and a culvert in need of repair. Re-growth 

of herbicide treated P. australis has also occurred along the state park border. The total 
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number of species encountered within the marsh remained essentially the same across 

years (14 or 15).  Overall, the UVVI for all three years, when compared to other 

northeastern salt marshes undergoing varying stages of horizontal losses, are considered 

to represent non-resilient platforms where UVVI > 0.1 (Ganju et al. 2017). 

The apparent inverse relationship between H. spartinae abundance and S. 

alterniflora productivity metrics, while not significant between all years, was of interest. 

Recalling the work of Boyer and Zelder (1994, 1996) this insect’s preference is for less 

healthy plant materials, which may have been the case in Ellisville Marsh. In the San 

Diego marshes, H. spartinae was observed to decline in number when the plant received 

nitrogen additions (considered a stress factor) contrary to the increase in numbers that 

had been expected (Boyer and Zedler 1996) and contrary to Larssen (1989) and Louda 

(1988) who determined that an already stressed plant is less likely to withstand insect 

herbivore onslaught. 

Burke et al. (2003) has reported a Cu concentration of 6.11 ppm for healthy S. 

alterniflora leaf tissue similar to that found in the non-infested plants studied from 

Ellisville Marsh (9 ppm). It could be that the fibrous appearing scale insect test structures 

adsorbed copper particulate preferentially from surrounding sediment/seawater, or that 

the plant itself, because of damage caused by insect sucking may have had increased 

copper uptake. No other element, however, was found to deviate in this manner 

(including B, Fe, Zn, Mn, Mg, Na, Ca, K, P, N) making adsorption from seawater a less 

likely mechanism. Xu et al. (2018) report Cu and Zn plant accumulation increasing with 

waterlogging duration under field conditions. 
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The mean ADH level found in 2011 (1659 µmole ADH activity/g fresh wt./hr.) 

was higher than those reported elsewhere for S. alterniflora under waterlogged 

conditions. Mendelssohn and McKee (1988) described levels ranging from 150 to 600 

µmol ADH activity/g fresh wt-hr for flooded S. alterniflora.  A laboratory experiment by 

Maricle et al. (2006) found up to 300µmol ADH activity/g fresh wt-hr under flooded 

conditions compared to values as high as 6241µmole ADH activity/g fresh wt-hr in 

Ellisville Marsh. The significant decrease in mean hydroperiod evident in 2012 may have 

had a favorable impact on metabolism by increasing drainage and unsaturated pore space 

resulting in more O2 being available to the plant accounting for the significant decrease in 

requisite ADH activity. The decrease in fermentative ADH activity, and therefore, 

increase in additional ATP available through aerobic respiration, however, may not have 

been enough to positively counteract S. alterniflora productivity declines in this year.  

In summary, S. alterniflora plant height showed a statistically significant positive 

relationship with increasing 21-day hydroperiod, while other productivity indicators 

(aside from percent cover) appeared to decline to their lowest points in 2012 and then 

rebound close to pre-dredge circumstances by 2013. The relationship between water 

level/length of inundation and plant height is a documented phenomenon with more 

intensely studied grasses such as rice and creeping bentgrass (Jiang and Wang 2006; 

Kende 1998).  

Finally, there was an inverse relationship between plant biomass and mean H. 

spartinae density, but not enough information to ascertain whether the scale was a 

contributor to plant stress or whether its preference was for already stressed plant 

material. The increase in Cu in plants with tests present deserves further research to 
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determine if this is the insect’s direct affect on the plant tissue and what metabolic role 

this might play in plant productivity in widely varying hydraulic conditions.   
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CHAPTER 4 

MARSH WATER AND SOIL CHEMISTRY 

4.1 Introduction 

Chemical constituents, including nutrients, enter the marsh system in the semi-

diurnal flux of tidal water. They travel through the soil pore spaces, and as sheet flow, 

over the soils/sediments in the salt marsh. Inputs from upstream and groundwater sources 

also contribute to the chemical makeup of the pore water (water in the pore spaces of the 

soil/sediment). Microorganisms in turn alter these constituents, and other abiotic and 

biotic factors, as do the salt marsh plants themselves. A large body of literature exists on 

nutrients in salt marshes because of the interest in eutrophication and the marsh’s ability 

to assimilate excess nutrient (Darby 2006; Fox et al. 2012; Howes 1986; Morris et al. 

1982, 2002, 2006; Smart 1980; Valeila et al. 1974, 1976, Deegan et al. 2007, Wigand et 

al. 2018). More recently, research has focused on determining the affects of nutrients on 

productivity (or lack thereof) and on marsh platform building in order to keep pace with 

the rise in sea level (Kirwan et al. 2010; Morris et al. 2013; Deegan et al. 2013). 

Typically, nitrogen is considered limiting for salt marsh above ground vegetation, 

despite it being readily prevalent in influent sources as nitrate (NO3
-) and being rapidly 

converted by microorganisms to available ammonium (NH4
+) for plant uptake (Morris et 

al. 2013, 2002; Deegan et al. 2013). Because divalent Mg, Mn, and Ca are predominant 

in seawater, they compete for cation exchange sites on silts and clays, thereby excluding 

monovalent NH4
+ and making it less available for uptake by the root. These same cations 

compete with NH4
+ for uptake mechanisms at the root membrane level and impede NH4

+ 
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uptake (Morris and Dacey 1984). Uptake of NH4
+ as opposed to NO3

- comes at a lower 

energy cost for the plant overall because it can be directly synthesized into glutamate, and 

then into nitrogen containing amino acids without the larger ATP requirement of NO3
- 

assimilation (Cronk 2001). Furthermore, the prevalence of sulfides (S2-
x) in the soils 

interferes with NH4
+uptake by plants because sulfides interact with cytochrome c oxidase 

and ADH respiratory/fermentation enzymes (Maricle et al. 2006; Bagarinao 1992) 

effectively poisoning metabolism. 

Most information on S. alterniflora growth has been developed by nitrogen 

fertilization studies in situ or via greenhouse/lab experiments where control over just the 

nitrogen variable was possible (Daleo 2008; Smart 1980; Howes et al. 1986; Morris et al. 

1982, 1984, 2013; Valeila 2008). In general, as nitrogen supplies are increased, so too are 

S. alterniflora above and below ground productivities, although there have been studies 

showing a decline in below ground biomass with increasing fertilization (Deegan et al. 

2013; Wigand et al. 2018; Darby 2006).  Morris et al. (2002) describe a quadratic 

function as a phenomenological fit to increases in above ground biomass on fertilized 

plots as compared to unfertilized, control plots. 

 The biogeochemical cycles of Fe, P and S in salt marsh soils/sediments are also 

interwoven. Microorganisms, pH and degree of oxygenation combine to create complex 

cycling between concentrations of various forms of the three inorganic elements in the 

liquid, solid, and gaseous phases of the salt marsh. In unsaturated conditions, bacterial 

and fungal respirations compete for oxygen with the roots’ process of oxygen 

consumption (Burke et al. 2003). In saturated conditions, such as extended periods of 

water logging, oxygen in the root zone declines even further. Even without 
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microorganisms’ respiration competing for oxygen, in inundated circumstances, less 

oxygen enters roots due to the poorer diffusion of oxygen in water as opposed to air 

(approximately 10,000 fold slower) (Thompson and Greenway 1991; Lennard 2003).  

Under these circumstances the impact of accumulating sulfides becomes important. If 

conditions in the sediment are anaerobic then the sulfur forms present may be either 

soluble (S2-, HS-, and H2S) or insoluble (FeS2), and possibly include sulfur containing 

organic compounds (Luther et al. 1985).  If conditions in the sediment become oxidized, 

liberated sulfur and iron can form unfavorable physical and chemical soil/sediment and 

porewater conditions (Portnoy and Giblin 1997a, 1997b) including acidification. 

Phosphorous can become a limiting nutrient for plant production in the marine 

environment (Smith 1984). If ferric iron concentrations are high then it can combine with 

available PO4
3- to form FePO4 and limit P availability for the plant. In addition, high 

concentrations of Fe3+ present in oxidized conditions can precipitate and form plaques of 

ferrihydrite along root zones that prevent the physical exchange of necessary plant 

nutrients causing iron toxicity and bronzing of plants (Cronk and Fennessy 2001). In a 

salt marsh, chroma values (</= 2) for the sediment indicate that the form of iron present 

is likely to be the reduced ferrous (Fe2+) form (Brady and Weil 1996). Plants have been 

shown to have higher growing season phosphorus levels in short height phenotype 

populations compared to those in tall stand leaf material as reported by Gallagher (1980), 

while Darby (2006) determined that below ground biomass decreased by 40 to 60% with 

P/Fe additions. Valeila (1974) showed no phosphorus limitation in stands of low marsh S. 

alterniflora using fertilization experiments.  
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Salt marsh sediments are classified as Sulfaquents and Sulfihemists because of 

their high concentrations of sulfidic materials and organic matter (Brady and Weil 1996; 

Richardson and Vepraskas 2001). The typical average concentration of dissolved sulfate 

in seawater is 2,700 mg/l (Burton 1976). Its presence in pore water means it can be used 

as an alternative electron acceptor in anaerobic conditions by sulfate reducing bacteria to 

produce sulfide (Giblin and Howarth 1984).  One mole of reduced sulfate accounts for 

mineralization of 2 moles of organic carbon-to-carbon dioxide (Jorgensen 1977, Howarth 

and Teal 1979). One study found sulfate reduction rates to be higher in short S. 

alterniflora stands (90 mmoles SO4
2-/m2/day) versus tall S. alterniflora stands (30 

mmoles SO4
2-/m2/day), although the authors recommended further study of tall grass 

sites. Giblin and Gaines (1990) report that in salt marshes, 62-99% of reduced sulfur from 

sulfate reduction ends up as insoluble FeS2 (pyrite), with only a minor component 

resulting in soluble or acid-volatile sulfides. The pH of the soils and pore water determine 

the predominant sulfur form, with S2- found at pH values near 14, neutral to alkaline pH 

values prescribe primarily the presence of HS-, and pH values less than 7 indicate H2S 

will be the dominant form. Sulfate is found across the entire spectrum of pH, while S˚ is 

found in higher concentrations only at low pH values. Pore water levels of sulfide in salt 

marsh with S. alterniflora have been reported to range from 1 to 8 mM with highest 

levels at depths of 10 to 18 cm bgs (Carlson and Forrest 1982, Stribling and Cornwell 

2001). 

Sulfide can eventually enter the plant without metabolic control causing 

respiratory poisoning in extreme conditions (Bradley and Morris 1990; Taiz and Zeiger 

2006). A total soil sulfide concentration of 250 µg S/g soil (0.025%) may limit S. 
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alterniflora growth (Krairapanond et al. 1991, Lamers et al. 2013). As discussed 

previously (Chapter 3), soluble sulfide may also limit fermentative processes by 

inhibiting alcohol dehydrogenase activity (necessary to continue ATP formation) 

(Bradley and Morris 1990; Cronk and Fennessy 2001; Koch et al. 1990; Maricle and Lee 

2006). 

4.1.1 Objectives 

This study presents data on nutrients and sulfide in pore waters, surface water 

monitoring results, and concentrations of sulfur in soils, along with other typical 

parameters such as pH and salinity, in order to try to determine their relationship to S. 

alterniflora productivity and the marsh response to dredging as a whole. 

4.2 Methods and Materials 

4.2.1 Sample Collection and Handling 

4.2.1.1 Marsh Water Quality and Upstream Surface Water Contributions 

The Massachusetts Estuaries Project (MEP) planned, established and coordinated 

a citizens’ baseline water-quality monitoring program for Ellisville Harbor. This work 

was required for incorporation of the embayment into the MA Estuaries Project – a 

collaborative effort between MADEP and School for Marine Science and Technology 

(SMAST) established to develop nitrogen-loading limits for 89 embayments in 

southeastern Massachusetts. Four years of water quality (2003 through 2007) monitoring 

were collected for validation of the linked watershed embayment model implemented 

under the Estuaries Project. 
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Volunteer citizens collected water samples at pre-determined stations on a 

schedule that was established by SMAST. Dissolved oxygen, salinity, pH, conductivity, 

turbidity, total dissolved solids, total suspended solids (2013 & 2014 only), Secchi disk 

depth, and chlorophyll measurements were collected from two upstream freshwater 

feeder creek locations (EVH01, EVH02), three inner marsh locations (EVH03-EVH05), 

channel (EVH06) and ocean front (EVH07) reference locations on at least two occasions 

each summer (Figure 2.1). These samples were analyzed for a suite of analytes by 

SMAST, including: NO2
-, NO3

-, NH4
+, dissolved organic nitrogen (DON), particulate 

organic nitrogen (PON), chlorophyll a, pheophytin a, ortho-phosphate, salinity, and 

dissolved oxygen (DO). No sulfides were analyzed.  

Volunteer training, equipment needed to perform water quality sampling, a 

QAPP, and necessary data management were provided by SMAST. Project records 

indicated that no prior water quality data existed for Ellisville Harbor.  Methods used by 

the UMass Dartmouth SMAST are documented elsewhere (“Summary of Water Quality 

Monitoring Program for the Plymouth, Kingston and Duxbury Harbor Embayment 

System (2003 to 2004)”, Draft Final July 20, 2005.). The sampling program was 

conducted on a summer seasonal basis from 2003 to 2005, 2007, by the author and 

volunteers, and then reinitiated, with slight method modifications, as part of permit 

monitoring requirements by the FEM in 2010 through 2013.  Separate study of Savery 

Pond, a principal upstream water source for the marsh, was conducted in 2012 due to a 

history of observed and documented blue-green algae blooms and known cranberry bog 

discharge into the pond. Methods used by Aquatic Control Technology, Inc. are 
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documented elsewhere in the report entitled “2012 Water and Sediment Quality Survey 

of Savery Pond-Plymouth, MA”, Final Report, November 2012. 

4.2.1.2 Pore Water Samples 

In order to collect marsh pore water, ninety-seven (3 later abandoned in 2011), 

5.08 cm OD diameter, 0.91 m deep PVC piezometers were installed in the spring of 2010 

across the five pre-designated transects at 60-ft intervals. The lower 46 cm of each PVC 

pipe was perforated by drilling 1 cm holes every 2 cm and was wrapped in landscape 

cloth before installation, similar to the methods outlined in Carlisle (2002) for larger 

diameter groundwater wells. The piezometers were packed only with the original marsh 

materials dug from the installation hole. Marsh groundwater/pore water samples were 

collected 1 to 2 hours after the high tide using a hand-held bailing pump (Cole Palmer). 

Each piezometer was pumped to dryness and allowed to recover for approximately 30 

min before sampling. Samples were pumped into 118 ml (4 oz.) volume, polyethylene, 

Standup Whirl pack bags, placed on ice and analyzed within 1 to 3 hours of collection.  

No sample preservation, other than being maintained at 4 ˚C, was used.  Samples were 

allowed to equilibrate to room temperature (25˚C) prior to chemical analysis.  During this 

time period suspended sediment was allowed to settle and care was taken not to re-

suspend material when taking sample aliquots for analysis or when inserting the pH 

probe. 

4.2.1.3 Soil Samples 

Sub-samples of soil samples collected for physical properties analysis (Chapter 5) 

were air and oven dried (100˚ C for 24 hr.), and then ground to fine particles in a mortar 
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and pestle. Visible organic material was removed using a 2mm sieve and were stored in 

plastic Baggies to await pH and sulfur analysis.  

4.2.2 Salinity, pH, Temperature and REDOX Analyses 

Salinity of the pore water was measured using a hand-held refractometer (VISTA 

Model A366ATC) with automatic temperature compensation. Results were reported in 

ppth (%). Calibration of the optics was checked using distilled water on a routine basis. 

Soil salinities were not measured. 

Pore water pH measurements were made with a multipurpose meter with KCl and 

calomel electrodes. Sample pH was measured using a 3-point pH buffer calibrated 

Oakton pH meter with glass electrode. To provide a comparison between in-situ soil pH 

measurements and lab pH measurements, in situ soil pH values were obtained by placing 

a hand held pH electrode (Forestry Suppliers Co.) directly into the subsurface sediment. 

This field-tested soil was then collected and transferred to the laboratory for drying prior 

to measuring pH using laboratory methods. Soil pH was determined in the laboratory by 

rewetting previously air-dried soil in a ratio of 3 parts distilled water to 1 part soil.  A 

Fisher Accumet pH meter (Model 805 MP) and combination Ag/AgCl probe were then 

placed into the paste/slurry and the pH measured +/- 0.2 pH units. Water temperature was 

measured by the multimeter system used for pH measurement and soil temperatures were 

measured with a direct temperature probe inserted to a depth of 30 cm bgs. 

Oxidation-reduction potential (ORP)/REDOX probes were constructed as in 

Vepraskas and Bouma (1976) by soldering 1.25 cm platinum wire (20 gauge) to copper 

wire (12 gauge).  The copper wire was sealed inside a 0.67 cm PVC pipe using epoxy 

(Lucite Corp.) to make the probes watertight and to seal the platinum to copper junction 
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in epoxy.  REDOX potentials were measured using a digital multi-meter (Craftsman 

Model 82082).  

A standard ferrous-ferric solution for ORP measurements referred to as a “poised” 

solution (Light 1972) was prepared by dissolving 39.21g/L ferrous ammonium sulfate, 

48.22g/L ferric ammonium sulfate and 56.2 ml/L concentrated H2SO4.  When measuring 

the potential of the platinum electrode versus the Ag, AgCl reference electrode with 4.0 

M KCl filling solution, the expected EMF for this solution was +475 mV at 25 ˚C. Probes 

that did not come within +/- 30 mv of this value, or within +/- 10 mv of each other, were 

not used.  Probes were checked prior to each summers’ measurements of ORP. 

Field measurements were made generally at a depth of 30 cm corresponding to 

the mid-depth of marsh plant root zone. Several measurements within and around each 

plot border were collected during initial phases of collection (pre-dredge conditions) to 

verify that there were generally consistent readings between small spatial distances. This 

effort was not repeated during successive sampling rounds because of the difficulty in 

accomplishing coverage of all 94 plots during similar tidal conditions and within a 

reasonable time frame. 

Marsh redox conditions were measured every year when below ground biomass 

was harvested during September or October in 2010 through 2013.  In addition, in August 

2012, a second round of measurements was collected. Because tidal conditions could 

potentially damage the probes, they were not left in place, rather each measurement was 

made at least 1 hr. into an ebb tide following insertion to the appropriate depth (30 cm) 

and after a 5-minute stabilization period.  Results were recorded and corrected to 

Standard Hydrogen Equivalents by adding a +200 mv correction factor as in Light 



81 81 

(1972). Output of the electrodes was measured using a saturated Ag, AgCl electrode. 

Corrections for temperature and use of the Ag, AgCl electrode versus a standard 

hydrogen electrode were made by adding +244 mV to meter readings (this value was 

adjusted depending upon sediment temperatures) (Rabenhorst 2009). 

4.2.3 Chemical Analyses 

4.2.3.1 Soluble Sulfides and Total Sulfur 

Total dissolved sulfide in pore water was analyzed using Hach Co. Method 8131 

(Methylene Blue Method) with a range of detection from 0.01to 0.6 mg/l as S2-. This test 

works on the principal that hydrogen sulfide and acid-soluble metal sulfides react with N, 

N-dimethyl-p-phenyldiamine oxalate to form methylene blue under acidic conditions 

(Cline 1969). Methylene blue absorbance was measured at a wavelength of 665nm (1 cm 

light path) using a Hach spectrophotometer (Model DR2010). 

If necessary, dilutions using distilled water were performed to obtain 

concentrations within the measurable range. Some unaccounted sulfide loss may have 

occurred during dilution and storage. Samples were allowed to settle for a 30-minute 

period prior to analysis and aliquots were taken from the top 5 cm of each sample bag. 

No separation for dissolved or insoluble sulfide determination was performed because of 

the difficulty presented by manual filtration.  In deference to these laboratory constraints, 

the samples may not represent absolute sulfide concentration, but were intended for 

relative comparisons across piezometer locations as all samples were treated alike. Field 

duplicates were analyzed at a frequency of 1 duplicate per 20 samples and relative 

percent difference was calculated for each duplicate pair. Blank samples consisting of 
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distilled water were also analyzed at a 1 to 20 frequency. Unfortunately, standard 

addition to determine accuracy of the laboratory technique was not performed due to the 

difficulty in preparing a stable sulfide standard for titration in the field. The Hach 

Company documentation claims a standard deviation of  +/- 0.003 mg/l S2- in their test 

laboratory. 

Thirty-three soil samples from randomly selected locations and depths ranging 

from 15 to 46 cm (from all years) were analyzed for total sulfur at the Marine Biological 

Laboratory, Ecosystems Laboratory in Woods Hole, Massachusetts. Sample depths 

corresponded to the root zone and the depth of redox probe insertion. Samples were 

ground to fine particle size, weighed; combusted at 1350˚C in a LECO S632 total sulfur 

analyzer, and the total amounts of SO2 quantified using coulometry. Anthracite standards 

(ranging from 0.38 to 3.1% S) were used as calibration samples and run at a frequency of 

1 per 10 samples.  Field duplicate samples were run at a frequency of 1 per 20.  Results 

were reported as percent total sulfur. 

4.2.3.2 Ammonia 

A modification of the salicylate method (Bower and Holm-Hansen 1980) was 

used to determine both high and low pore water concentration ranges of NH4
+.  The high 

range ammonia test (Hach Co. Method 10031) measured concentrations up to 50.0 mg/l 

NH3-N, while Hach Co. Method 8155 was used for low concentration samples up to 0.5 

mg/l. Any necessary dilutions were prepared using nanopure water. Both methods are 

appropriate for a seawater matrix and work on the principle that ammonia compounds 

will combine with chlorine to form monochloramine. This in turn reacts with salicylate to 

form 5-aminosalicylate. In the presence of nitroprusside catalyst, the 5-aminosalicylate is 
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oxidized to form a blue color that is masked by excess reagent to give a green colored 

solution measured at a wavelength of 655 nm. Field duplicates, standard addition and 

blank samples were measured at a frequency of 1 per every 20 samples analyzed. 

Standard addition to determine accuracy of the technique was performed using 200 µl 

additions of a 10 mg/L NH3-N standard solution purchased from the Hach Company.  

4.2.3.3 Orthophosphate 

Hach Co. Method 8048 PhosVer 3 was used to analyze for reactive phosphorus in 

a range from 0.01 to 5.0 mg/l PO4
3-. Sample pH values were within the neutral range (6 to 

8 pH), therefore, no pH adjustment was necessary prior to analysis of orthophosphate 

(reactive phosphorus). Phosphate-free detergents were used when cleaning glassware, 

and sample Whirl pack bags were certified as phosphate-free. The method used involved 

the reaction of orthophosphate with molybdate in acid medium to produce a 

phosphomolybdate complex that was subsequently reduced by ascorbic acid yielding a 

blue color due to molybdenum. Absorbance was measured at 890 nm. Field duplicates, 

standard addition (1.0 mg/L PO4
3- standard Hach Co.), and blank samples were measured 

at a frequency of 1 per every 20 samples analyzed for quality control.  

4.2.4 Statistical Analyses 

As in prior chapters, summary statistics are presented for each analyte and 

residuals were evaluated for normalcy and sample populations for homogeneity of 

variance across years in order to use classical statistical testing (ANOVA) and mean 

separation (Tukey’s HSD) across years. Temperature and pH data were merely presented 

as ranges and not subject to statistical testing. Where appropriate, pore water results from 



84 84 

plots containing >25% cover S. alterniflora plots were considered across years, and 

results from higher elevation plots were evaluated in comparison to lower elevation plots. 

4.2.5 Study Limitations 

The relative percent difference (RPD) of field duplicate samples (grand mean, 

n=16) for pore water sulfide duplicate samples obtained in the field was 38%. The sulfide 

field duplication results do not reflect a high degree of reproducibility, and this likely 

indicates possible entrainment of differing amounts of suspended solids containing 

insoluble sulfur or changes in indicator status due to warming and oxygen shifts within 

the sample. It was not appropriate to compare specific sulfide concentrations with other 

study results or spatially across the marsh, yet it was useful to look at marsh wide trends 

across years as all samples were treated similarly. Laboratory reproducibility was 

acceptable at +/- 8% for sulfide analysis. RPDs for ammonium and orthophosphate are 

considered adequate for comparison to other studies, as well as across the marsh platform 

and between years (+/- 5% laboratory RPDs). 

4.3 Results 

4.3.1 Surface Water 

Results from sampling surface waters from 2004 through 2013 are tabulated in 

Table 4.1. Surface feeder streams had little to no influent nutrient, chlorophyll or solids 

content and are not represented. To provide a more meaningful summary of the eight 

years and 20 rounds of data, means were calculated across all three inner marsh locations 
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EVH03, EVH04, and EVH05 (Figure 2.1) (as most representative of marsh water quality) 

and compared across years. 

In general, the salinity, pH, total dissolved solids and conductivity measurements 

increased from 2010 to 2013, most likely reflecting greater flushing with seawater. 

Chlorophyll (a) also increased by 2 to 3 orders of magnitude in the most recent 4 years as 

compared to the first 4 years of monitoring. However, this may be due to differences 

between laboratory measurements (2003-2007) versus in situ YSI probe measurements 

(2010-2013).  Dissolved oxygen appears to have been relatively stable across years, with 

the exception of a marked increase following winter 2003 dredging.  Differences in 

weather conditions (wind/wave, light/temperature and precipitation) during sampling 

may have influenced measurements, however, because canoe/kayak access was required, 

sampling was not performed during adverse weather or Beaufort conditions greater than 2 

Force (light breeze with no visible breaking wave crests).  

Nitrogen and phosphorous were analyzed by SMAST from 2003-2005, and in 

2007 in order to classify the eutrophication status of the marsh which was considered to 

have a poor to moderate Bay Health Index (School of Marine Science and Technology- 

SMAST 2005) depending upon the spatial position of the sampling. Due to expense, 

these analyses were not included for the ongoing FEM monitoring program because the 

nutrient related water quality parameters had not changed over the 4 year time period. 

However, from 2010 to 2012 it was observed that the southern most second order creek 

had visible opaqueness (possibly algal bloom), and it was learned that a failing septic 

system (proximate to PZ76 location) and located approximately 30m from Salt Marsh 

Lane creek was replaced in either late 2012 or early 2013. 
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Table 4.1. Water quality summary for inner Ellisville Marsh locations EVH03, 
EVH04, and EVH05 collected from 2003 through 2013. 
 
 

4.3.2 Pore Water 

Unlike the surface water measurements, pore water salinity and pH did not vary 

significantly across years and ranged from 4 to 41 ppth (or practical salinity units – psu) 

and 5.3 to 8.1 pH units, respectively. Tables 4.2 and 4.3 present summary statistics for 

ammonia and orthophosphate, as well as pore water sulfide concentrations and redox 

potential (all collected from depths ranging from 20 to 46 cm bgs). Pore water ammonia 

concentrations did not vary significantly across years. Contrastingly, orthophosphate 

concentrations declined considerably (ANOVA, Tukey HSD, p<0.05) the first summer 

following the dredging event. Pore water sulfide results were positively correlated with 

NH4
+ levels in 2011 (r=0.52), although the field reproducibility of the sulfide results was 

not acceptable for all sample duplicates as previously stated (Study Limitations). 

 

 

 

 

2003 2004** 2005 2007 2010 2011** 2012 2013
Parameter (units)

Dissolved Oxygen mg/L 6 8.2 8.9 7.2 6.6 6.2 6.4 7.5
Salinity psu 28.1 28.3 26.2 23.6 29.8 24.8 28.8 30.7
pH Range NA NA NA NA 7.4-7.6 6.1-7.4 5.7-7.8 7.8-8.0
Conductivity uS/cm NA NA NA NA 33581 36606 44408 47576
Turbidity NTU NA NA NA NA 2 3.5 2.6 1.9
Total Dissolved Solids mg/L NA NA NA NA 21.81 23.73 28.79 30.91
Total Suspended Soilds mg/L NA NA NA NA NA NA 7106 9852
Secchi Disk Depth m DND DND DND DND DND DND DND DND
Chlorophyll mg/L 0.0153 0.0022 0.05 0.074 0.76 0.15 3.99 2.13

* All values are Means calculated across all summer monitoring events in a year & combined EVH03-05 loc
**Years in bold are summer immediatley following inlet openingNA-Not Available, DND - Did Not Disappear
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Table 4.2. Pore water NH4
+ (NH4) and PO4

3- (PO43) summary statistics for plots 
containing >25% percent cover Spartina alterniflora. Numerical designation in 
column heading refers to year of collection (e.g. 10 = 2010). Columns with the same 
letters are not significantly different (ANOVA, Tukey’s HSD, p<0.05). 
 

 
NH410 NH411 NH412 NH413 PO4310 PO4311 PO4312 PO4313 

units (mg/L) (mg/L) (mg/L) (mg/L) (mg/L) (mg/L) (mg/L) (mg/L) 

         sig. diff. a a a a a b b b 
nobs 56 56 56 56 56 56 56 56 
min 0.03 0 0 0 0.1 0.02 0.02 0.65 
max 22.2 23.2 27.2 13.13 127 4 8 11.28 
mean 3.135 1.825 2.778 2.363 8.916 1.061 1.426 2.629 
median 0.425 0.6 0.9 1.55 1.085 1.04 1.085 1.995 
sd 5.124 3.36 4.62 2.543 22.227 0.728 1.396 1.796 
se 0.685 0.449 0.617 0.34 2.97 0.097 0.187 0.24 
cv 163.432 184.145 166.279 107.628 249.28 68.609 97.909 68.295 

 

 

Table 4.3. Pore water sulfide (S) and oxidation-reduction potential (REDOX) 
summary statistics for plots containing > 25% percent cover Spartina alterniflora. 
Columns with the same letters are not significantly different (ANOVA, Tukey’s 
HSD, p<0.001). Sulfide porewater results failed QA/QC for duplicate replication. 
 

 
S10 S11 S12 S13 REDOX10 REDOX11 REDOX12 REDOX13 

units mg/L mg/L mg/L mg/L Eh (mv) Eh (mv) Eh (mv) Eh (mv) 

         sig. 
diff. NA NA NA NA a a b b 
nobs 56 56 56 56 56 56 56 56 
min 0.01 0.02 0.01 0.05 -202.00 -270.00 -60.00 -182.00 
max 58.50 47.50 23.00 16.42 67.00 174.00 341.00 396.00 
mean 4.35 6.05 2.11 1.65 -110.80 -61.52 128.38 147.57 
median 0.23 0.37 0.14 0.45 -119.00 -101.00 113.00 130.50 
sd 10.79 11.27 5.36 2.99 65.81 132.12 88.27 138.28 
se 1.44 1.51 0.72 0.40 8.79 17.66 11.80 18.48 
cv 247.81 186.37 253.61 180.93 -59.39 -214.77 68.76 93.70 

 

4.3.3 Soil Chemistry 

Mean oxidation-reduction potential (ORP) measurements (REDOX), collected 
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from depths 30 cm beneath ground surface, showed a dramatic reversal in charge 

(ANOVA, Tukey’s HSD, p = 2.26 x 10-11) as measured the summer of 2012 and 

remained positive in 2013 (Table 4.3 and Figure 4.1).  This redox finding corroborates 

the observed decline in sulfide pore water concentrations; at least the decreasing trend in 

soluble porewater sulfide appears consistent with what would be expected with more 

positive Eh readings. Most importantly, this finding coincides with the decline in mean 

hydroperiod observed the summer of 2012. 

 

 
 

Figure 4.1. Oxidation-reduction potential (ORP) for marsh sediment, Ellisville 
Marsh, Plymouth, MA. Columns with the same letters are not significantly different 
(ANOVA, Tukey’s HSD, p<0.001).  
 
 

Percent sulfur levels in the soil samples ranged from 0.15 to 1.5%, with means 

from 0.47 to 1.1% across years.  There was a significant increase (ANOVA, Tukey’s 

HSD, p= 0.0092) in total sulfur concentration in samples from 2013 as compared to 2010, 

2011, and 2012 levels. 
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In-situ soil pH values were slightly acidic ranging from 5.2 to 6.4 (+/- 0.2) pH 

units). Soil pH values determined after drying in the laboratory were very acidic to 

slightly acidic ranging from 2.3 to 5.7 (+/- 0.2) pH units. The increased acidity in 

laboratory samples was due to the re-hydration of dried soils containing high 

concentrations of SO4
2- to form a soil paste that likely caused the formation of H2SO4 

(Brady and Weil 1996).  

4.4 Discussion 

Both dredging events (winter 2003 and 2011) had the effect of re-suspending 

sediment from the marsh and mudflat surfaces. While not measured directly, observers of 

dredging activities noted visibly entrained black sediment leaving marsh with the newly 

released flow of water (author’s personal communications with Paul Martino 2003, and 

Eric Cody 2011). Because this material might act in a short-term fashion to fertilize the 

marsh, an increase in NH4
+ and PO4

3-concentration within the pore water might be a 

reasonable expectation, as has been speculated by Valiela et al. (1974) as an explanation 

for height and biomass increases.  Either this increase did not occur, was not detectable, 

or plant uptake/geochemical processes altered concentrations by the first summer 

following dredging. Pore water NH4
+ levels across all years remained similar, while 

contrastingly PO4
3- levels declined following dredging (ANOVA, p<0.001). 

Phosphate is not typically a limiting nutrient for S. alterniflora (Valeila 1974; 

Gallagher et al. 1980). Howes et al. (1986) report that well drained sediments enhance 

uptake of phosphate by S. alterniflora roots, which in turn reduces concentrations in pore 

water. This might be the explanation for the substantial decrease in porewater PO4
3- in 
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2011 following dredging. By 2013 however, pore water concentrations of PO4
3- (2.6 

mg/L, +/- 1.8) were higher than values reported for mean annual pore water 

concentrations from a well drained marsh (1.4 mg/L) analyzed using a similar ascorbic 

acid method (Stribling and Cornwell 2001). S. alterniflora plant tissue concentrations of 

phosphorus were slightly lower; 0.2% (+/- 0.02) from the well drained marsh discussed 

above and 0.3%  (+/-0.05) for Ellisville Marsh. 

Overall, the oxygenation status of the marsh appeared changed by the summer of 

2012.  The change was delayed by at most 18 months and at least 7 months behind the 

initial dredging event. The ORP showed a reversal in 2012 to positive conditions that 

relates well to the decrease in mean hydroperiod and the decrease in ADH activity 

between 2100 and 2012 conditions (Figure 4.1).  ADH levels show a weak, although 

significant (p< 0.05) negative linear response to increasing REDOX values (Figures 4.2 

and 4.3). 

 

. 
 
Figure 4.2. Comparison of ADH activity and REDOX conditions Ellisville Marsh, 
Plymouth, MA. ANOVA (mean +/- sd), bars shown with shared letters are not 
statistically different (p< 0.05). 
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This shift in ORP from negative to positive likely accompanies shifts in microbial 

communities and oxidation states of iron and sulfur, as well as other elements.  

Mineralization of carbon under anaerobic conditions is depressed as compared to aerobic 

conditions (Keiluweit et al. 2017, Thomas et al. 2019) and rapid reversal of redox 

conditions could shift respiration to aerobic processes increasing labile CO2 and 

converting the salt marsh to a carbon source as opposed to sink. 

 
Figure 4.3. Linear regression (p = 0.057, r2=0.13) of Spartina alterniflora ADH 
activity to REDOX condition showing 95% confidence interval, Ellisville Marsh, 
Plymouth, MA.  
 
 

Organisms that mediate the oxidation/reduction of sulfur containing compounds 

include the dissimilatory sulfate reducing bacteria and assimilatory sulfide oxidizers. 
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sediment conditions had become more aerobic in 2012, it was reasoned that the amount 

of H2S and FeS2 (less soluble than H2S) might have declined in the more oxidized 

situation. It was also assumed that sulfate would be flushed from the soils with increased 

drainage. Mean concentrations of soil S did decline from 2010 to 2012, but then became 

higher than 2010 levels (0.67%) by 2013 (1.06%) (p = 0.0092). Assuming that 

contributions of sulfate to sediment from overlying seawater have remained the same 

across years, an increase in total sulfur in 2013 soils may indicate in essence a “recovery” 

to higher sulfur conditions; recovery in this sense meaning a sulfur concentration similar 

to a lower elevation marsh circumstance. It may also be that the SO4
2- form of sulfur is 

becoming more concentrated in the sediment under more aerobic conditions because 

flushing time has reduced as compared to 2011 values. Unfortunately, the analysis of 

sulfur in soils did not provide further sulfur speciation. 

In summary, the marsh surface water quality indicated a general shift to 

increasing levels of dissolved solids (reflecting dissolved solids in seawater), increasing 

dissolved oxygen following dredging, yet essentially no overall change in salinity within 

pore water. Orthophosphate within the pore water significantly declined with decreased 

hydroperiod, while sulfur content of soils were significantly higher in 2013 as compared 

to 2010.  Dissolved sulfide levels in the porewater may show a declining trend across 

years (although this data did not meet strict quality assurance requirements) possibly 

meaning a decrease in sulfide toxicity. Increasing ORP was significantly correlated with 

decreasing activity of ADH in the S. alterniflora root samples and coincided with 

observed decreases in hydroperiod in 2012. 
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It appears that certain circumstances prior to summer of 2012 may have been 

critical to S. alterniflora productivity and to alteration of environmental conditions within 

Ellisville Marsh. This includes the statistically significant decrease in hydroperiod, below 

ground biomass and plant height productivity indicators, the shift to more positive 

oxidation-reduction state of the soils, and coincident lowered ADH activity.  It is unlikely 

that the lack of hard freeze and snow pack in the fall and winter of 2011-2012 accounted 

for all of these coincident and varied types of changes. Further multivariate analysis 

(Chapter 6) of the relationships between the measured productivity and environmental 

factors may help to elucidate changes. 
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CHAPTER 5 

 
MARSH SOIL PHYSICAL CHARACTERISTICS 

5.1 Introduction 

If allowed landward transgression, salt marshes are habitats continually 

undergoing succession. In their seminal paper on community structure, Hairston et al. 

(1960) describe how bogs and ponds accelerate their own demise because of slow rates of 

detritus decomposition leading to filling in of the resource. In a similar fashion, slow 

rates of decomposition within anaerobic salt marsh soil/sediment and/or increased 

deposition of organic and/or mineral materials, can lead to progressive accretion and 

conversion to upland; especially if landward expansion is possible (Redfield 1965). In 

essence, salt marshes are always maintaining a balance amongst forces that regulate the 

accumulation and loss of organic matter/inorganic sediment. Inadequate tidal flushing 

accelerates succession by failing to remove detritus/accumulated wrack debris, limiting 

oxygen, slowing rates of decomposition, and in the case of Ellisville Marsh, by shifting 

salinities to those preferred by more brackish or freshwater, and often more invasive 

species such as Phragmites australis. 

In Ellisville Marsh mineral sediment deposition is ongoing. Sandbars are visible 

in the marsh interior in aerial photographs (Figures 1.4 and 1.5) and sand has been 

observed to routinely “float” on the quiescent water surface into the marsh (Figure 5.1). 

The percent cover by the sand classification increased in 2018 by 42% from 2008 levels 

(Chapter 3). Storms also contribute large amounts of sand to the marsh inlet while 

eroding beachfront (Chapter 1).  These sands have potential for interior migration. The 
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sandbars form at bends in the tidal channel, and could cause some interior obstruction to 

flow in secondary channels. Ultimately, this might limit finer sediment contributions to 

interior portions of the marsh. As the primary tidal channel becomes more constricted by 

sand and hydraulic inefficiencies result, interior obstructions will likely increase, causing 

less overall sediment to be delivered to the interior sections of the marsh, slowing 

accretion, and decreasing elevation gains that would help combat water level rise. 

 

 
 

Figure 5.1.  Sand flotillas entering Ellisville Marsh, Plymouth, MA, July 17, 2012. 
 

5.1.1 Objectives 

To understand the spatial distribution of the sediment/soil materials present and 

ongoing surficial deposits within the marsh, soil profiles were logged and samples 

collected for analysis of organic matter and particle size (percent clay, silt and sand 

fractions). Accretion plates were also used to collect materials across seasons in order to 
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determine one year’s worth of accumulation. Because change in soil makeup was 

assumed to be a slow process, the intent was not to document changes in soil profiles 

over time or enable pre- and post-dredge comparisons. Rather, the question posed was 

how do soil properties relate to environmental variables that were previously shown to be 

important to S. alterniflora growth, such as hydroperiod.  In addition, the accretion rate 

could be used to provide input to a simulation model used to determine the resilience of 

the marsh system under hypothetical/real sea level increases. 

5.2 Methods and Materials 

5.2.1 Sample Collection and Handling 

Soil borings were conducted in a random fashion by selection of 8 to 10 plot 

locations per year using a random number generator, without substitution, so that by the 

end of the 4-year study/permit period, 37 plot/piezometer locations were sampled. The 

number of soil samples taken per location depended upon whether there were obvious 

defining vertical differences in the soil profile. On average, two samples per borehole 

location were collected for 68 soil samples overall. Boreholes were dug with a corer and 

spade and soil was laid out in progression so that the profile could be viewed properly 

without caving/water intrusion interference. Approximately 100 to 500g of soil from each 

location were placed into separately labeled plastic bags and brought to the field 

laboratory within 1 hour for texturing and color characterization. This was followed by 

freezing each sample to prevent biological decomposition prior to drying and analysis for 

physical properties in the University of Massachusetts Amherst Soils Laboratory. 
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5.2.2 Soils Classification 

Abbreviated soil profiles (ending 61 cm deep into the marsh sediment) were 

prepared using methods as outlined in the Soil Survey Manual, Soil Survey Division Staff 

(1993).  A maximum depth of 61 cm was used because this was generally the maximum 

rooting depth or the depth where groundwater infiltration prevented soil column 

exposure.  Immediate appearance and wet soil color was determined using ranges for hue, 

value, and chroma, as supplied by the Munsell Color Soil Color Charts (2000). Soil 

texture, structure, consistency and redox features were described afterwards on soil 

profile forms. Infrequently the qualitative presence of reduced iron was also ascertained 

by assessing the soil sample with α, α’- dipiridyl and looking for the characteristic pink 

color indicating reduced iron. Because of the dark nature of the marsh soils, a paper filter 

and soil smear was used in order to visualize the color. Examination of the exterior of 

rhizomes and roots for areas of iron oxide staining also provide a qualitative indication of 

iron form present. 

5.2.3 Organic Matter Analysis 

Organic matter was measured using the loss on ignition technique as outlined in 

Methods for Soil Analysis, Part 2 (Black et al. 1965) and as described further by Nelson 

and Sommers (1982).  Previously ground and oven dried (103˚ C, until constant weight 

achieved) soil was combusted in a muffle furnace at 500˚ C for 16 hrs., allowed to cool, 

and then reweighed.  The weight lost during ignition was then considered to be equal to 

the mass of organic matter.  Results were then reported as percent by weight organic 

matter after taking initial sample weights into consideration. As discussed by Nelson and 

Sommers (1982) subjecting soils to this temperature results in overestimation of organic 
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matter because hydrated aluminosilicates lose structural water and carbonate minerals can 

be decomposed. 

Another technique used for determining the contribution of refractory organic 

material (such as peat) to underlying salt marsh soils involved the determination of stable 

plant fragment content (SPFC) as described by Twohig and Stolt (2011).  Samples for the 

SPFC were air dried and then passed through a 2 mm sieve by shaking.  Plant materials 

that remained on top of the sieve screen and did not pass through were weighed after 

oven drying at 60 ˚C for 24 hrs.  Results were reported as a percent of the initial air-dried 

sample and corresponded to the % of refractory material. 

5.2.4 Soil Bulk Density 

Soil bulk density was determined in 2014 in the top 20 to 30 cm at six locations 

using the core method (Blake 1965).  A 60 ml syringe with its top conical section 

removed was pushed into the soil, rocked slightly once inserted to its full extent and 

removed with soil core intact.  Using the volume gradation along the syringe barrel, the 

volume of the core was estimated by gently pushing the soil core to the end of the syringe 

using the plunger, trimming the end until flush, and then making note of the cylinder 

volume occupied by the soil.  Material was then pushed into tared weigh boats and dried 

for 24 hours at 105 ˚C.  The weight of the soil after drying divided by the volume yielded 

the bulk density in g/cm3. 

5.2.5 Particle Size Analysis 

Particle size determination for each soil sample began by grinding in a mortar and 

separation of the gravel using a 2 mm (No.10) sieve. Those samples that had been 
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identified by the loss on ignition procedure as having organic matter percentage greater 

than or equal to 8% were first treated by removal of organic matter with 30% H2O2 

digestion and then heating at 50-60˚ C for 1 hr. prior to undergoing particle size analysis.  

This was necessary because of known interferences of organic matter with clay and silt 

separation (Day 1965).  Following organic matter removal, procedures included slight 

modifications of those described by Day (1965).  A 25 g sub-sample of the ground 

material was used for analysis and placed into a 250 ml Erlenmeyer flask.  Twenty-five 

ml 5% sodium hexametaphosphate (Calgon detergent) was added to the flask containing 

the sample; the flask was stoppered and then shaken on a shaker table at low setting for 1 

hr.  After shaking, the sample was washed out of the flask through a 270µm sieve to 

remove the sand fraction.  This material was reserved for later separation by washing the 

material remaining on top of the sieve into a tared 100 ml beaker.  The materials passing 

through the sieve were collected in a 1200 ml graduated cylinder/settling column, the 

volume brought to the 1130 ml mark with distilled water. 

For the silt fraction determination, a metal plunger was pushed into the column in 

order to suspend all materials and after a 10 second time period, a 25 ml aliquot was 

withdrawn from the cylinder from a depth corresponding to 10 cm along the pipette 

length. This aliquot was placed into previously tared 50 ml beaker labeled T1 and oven 

dried at 100˚ C overnight.  The remaining water column was allowed to settle for 7.5 

hours, then a second 25 ml aliquot for the 10 cm depth was placed into a tared 50 ml 

beaker (labeled T2) and dried overnight at 100˚ C. This material constituted the clay 

fraction of the sample. The previously collected sand fraction was then sieved through a 
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series of sieves representing sand sizes ranging from 0.002 mm to 2 mm and the material 

retained and/or passing through each sieve were weighed (+/-0.01 g). 

5.2.6 Sediment Accretion Plates and Marker Horizons 

In 2012, 21 accretion plates (rough-surface, ceramic floor tiles) ranging in size 

from 117 to 420 cm2 were placed randomly on the surface of 21 plots across the marsh 

platform. Tiles were nestled under the vegetation when present and remained in place 

where deposited materials accumulated, decomposed, compacted or eroded over the span 

of approximately one year. At the end of the elapsed time, plates were collected and 

materials adhering to each surface were measured for thickness, scraped into a weigh 

boat, dried at 100˚ C and weighed (+/- 0.1 g).  Following this, organic matter and particle 

size were determined according to methods described in Sections 5.2.3, with one 

exception. The combined silt and clay fraction contribution was calculated by subtracting 

the percent dry weight of sand plus organic matter from 100. 

Surface accretion using a different technique was also attempted by spreading fine 

white feldspar across four 0.1 m2 locations across the marsh and waiting 2 years before 

measuring accretion. Locations represented one high marsh marker horizon (MH) (13), 

two intermediate height locations (MH9 and MH26), and one low region (MH72). 

Marker horizon plots were 1 m north of each corresponding piezometer (PZ9, PZ13, 

PZ26, and PZ72). In July 2016, the marker horizons could not be located despite 

painstaking location having been used, so no estimates of accretion were available using 

this technique. 
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5.2.7 Statistical Analyses 

Data were interpreted using a number of different approaches. As stated 

previously, the intent was not to show changes across time. Instead, the goal was to 

examine spatial difference in soil properties with depth and across the marsh and possibly 

relate these differences to those amongst and between other root-zone and pore water 

variables. The statistical packages “aqp” 1.6.0 and “geoR” through the 2013 R Core 

Development Team, R 3.1.0 (Beaudette et al. 2012) were used to obtain a spatial 

representation of the physical properties of the soil samples. Median values with depth 

were calculated by aggregating across multiple slices of all profiles. This required 

normalization for differing horizon depths and number of contributing samples. Samples 

representing the upper 30 cm of the root zone were carried forward for use in a 

constrained ordination (Chapter 6) evaluation of soil properties in relationship to other 

below ground environmental variables for the subset of soil sampling locations (McCune 

and Grace, 2002). This allowed further tailoring of parameters for use in simulation 

modeling (Chapter 6). 

5.2.8 Study Limitations 

Soil samples for organic matter and particle size analysis were collected at a 

frequency of approximately 10 locations per year and provided only a subset of the total 

plot number across the marsh. They also represent both high and low marsh elevations 

and therefore are not all relatable to the S. alterniflora population, but can be used to 

describe situations representing the whole marsh. Because locations were selected 

randomly some areas of the marsh were not equally represented. Accretion rates reflect 



102 102 

2012 - 2013 conditions only and bulk density measurements represent 2014 conditions 

only. 

5.3 Results 

5.3.1 Spatial Representation of Soil Properties 

The depth profiles of median percent organic matter, sand, silt and clay are shown 

in Figures 5.2 through 5.4 for high elevation plots, low elevation plots, and all sampled 

plots, respectively. 

 

 
 
Figure 5.2. Median percent concentrations sand, silt, clay and organic matter (om) 
with depth for high elevation plots (<25% S. alterniflora percent cover) only 
bounded by 25th and 75th percentiles 
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Figure 5.3. Median percent concentrations sand, silt, clay and organic matter (om) 
with depth for low elevation plots (>25% S. alterniflora percent cover) bounded by 
25th and 75th percentiles. 
 

 
Figure 5.4. Median percent concentrations sand, silt, clay and organic matter (om) 
with depth for all sampled plots bounded by 25th and 75th percentiles. 
 

The median sand concentration for all plots appears highest (30 to 50 %) in the 

rooting zone mid-depth (20 to 60 cm) interval, while organic matter (15 to 20%) and silt 
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(40 to 70%) are highest in the upper rooting zone (20 cm). The median clay distribution 

was generally near 15 % throughout the profile intervals, except for a slight increase to 

20 % observed in high elevation plots at approximately 10 cm.  Contrary to expectations, 

the low elevation median levels of organic matter (15-20%), and by extension organic 

carbon (using a 1.72 conversion factor), do not quite classify the median soil as a histosol 

(12-18% as organic carbon with clay content between 0 to 60%), but rather as a mucky 

mineral soil (Richardson and Vepraskas 2001). There were however several instances 

where individual samples had organic matter content greater than 25% with fibrous root 

matter and visible peat greater than 16 inches in thickness which defines an organic soil 

(Tiner 1999). 

Visual representations of soil boring results give the vertical and horizontal 

distributions of soil organic matter; sand, clay and silt across transect and plot locations 

in a north to south direction are provided in Appendix B. All locations (with the 

exception of PZ01-03, PZ05, PZ14, PZ24-25, PZ44, PZ49, PZ76) are considered low 

elevation locations and are classified as tidal soils because they are either flooded daily or 

have sulfidic materials within 5 inches of the surface as characterized by the rotten egg 

odor of hydrogen sulfide (NE Hydric Soils Technical Committee 2004).  The master 

horizons, O and A, are represented most frequently, with a B-horizon found in only one 

location at PZ76 (close to marsh margin). The A horizon was characterized by a mixture 

of partially degraded organic matter, roots and intermixed mineral soils.  The O horizon 

was assigned if the predominant material present was judged to be solely organic matter 

during textural classification. 
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 Transects most landward (T04 and T05) (furthest perpendicular distance from the 

shoreline) were under represented by the random selection process as compared to other 

transects and so were combined for visual presentation. The reader is cautioned to refer to 

legend for each separate figure because the divergent spectrum shown is counterintuitive 

when interpreting organic matter. The darker blue/green colors represent low 

concentrations, the darker brown colors represent highest concentrations, and the 

thicknesses without color represent the midrange concentrations.  

Initial visual impressions are that the highest silt and clay concentrations were 

found in the most landward locations, while the highest sand and lowest organic matter 

concentrations were found in locations most seaward or nearest to ditches, creeks, or 

channels. The organic matter within the marsh appears to be lowest in the locations 

where sand concentrations are highest. Figures 5.5 and 5.6 depict the spatial distribution 

of particle sizes across the marsh for depths inclusive of the rooting zone (15 to 30 cm). 

 It was reasoned that the sandier the sediment material in the rooting zone depth, 

the more likely that redox conditions would be high due to the larger pore space and that 

the closer distance to a water conveyance structure, the larger the amount of sand 

deposited. In order to examine these assumptions, a Pearson’s test for correlation 

assessed average redox conditions across all four years of measurement and found them 

inversely correlated, with both rooting zone organic matter and clay concentrations 

(p=0.056, r =-0.32 and p=0.031, r= -0.36, respectively). However, the percent sand and 

silt in the rooting zone did not correlate with the distance to nearest flow conveyance 

structure (ditch, creek, or channel abbreviated as DTD) nor did they correlate with 

average redox measurements. 
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5.3.2 Marsh Accretion and Bulk Density 

 
On average, 16 % of the material accumulated (by weight) on accretion plates was 

organic, 64 % was sand and 21 % were silts and/or clays (by weight using subtraction) 

amounting to an 85% fraction being inorganic. This compares well to the 80% fraction 

found by Vogel et al. (1996). Distribution of deposition varied, with lower elevation 

plates accreting on average 0.471 g/cm2/year and higher elevation plates accreting less at 

0.025 g/cm2/year on average. Average thickness of the sediment layer (in wet state) on 

low elevation plates ranged from 8 to 16.4 mm/year (+/- 1 mm), while high elevation 

plates did not have measurable thicknesses (< 1.0 mm) even after the year period. As 

stated previously, marker horizons were either not present two years after placement or 

could not be found.  Refractory organic material, as represented by the analysis of SPFC, 

had mean results of 0.23%, 0.19% and 0.08% for 2010, 2011, and 2012, respectively. The 

mean dry bulk density for Ellisville Marsh was determined to be 0.5 g/cm3 reflecting the 

lower organic matter content in the upper 20-30 cm.  

 . 
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Figure 5.5. Horizontal distribution of percent organic matter (top panel) and 
percent sand (bottom panel) for sampled plots as identified by GPS location in 
decimals north (N) and west (W).  Results are inclusive of 15 to 30 cm depth in 
rooting zone only. 
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Figure 5.6. Horizontal distribution of percent silt (top panel) and percent clay 
(bottom panel) for sampled plots as identified by GPS location in decimals north (N) 
and west (W).  Results are inclusive of 15 to 30 cm depth in rooting zone only. 
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5.4 Discussion 

Others have reported bulk densities in the top 50 cm of depth ranging from 0.2 to 

1.0 g/cm3 for northern salt marshes (Chmura and Hung 2004; Bricker-Urso et. al. 1989; 

Ganju et al. 2017, Llewellyn 2008). This range encompasses the bulk density (0.5 g/cm3) 

obtained for Ellisville Marsh. The higher bulk density implies that compaction of 

sediment due to ice loading or head of water may not have large effects on subsidence 

due to pressure when void spaces are full of water, and furthermore, rebound following 

drainage of any compressed peat materials is likely in New England marshes (Argow et 

al. 2006). 

Llewellyn (2008) used a dry bulk density 0.33 g/cm3 representative of reference 

marsh sediment materials; this report of 15-mm/yr. thickness of accumulation is similar 

to the maximum value measured directly for Ellisville Marsh (16.4 mm for a nearly one 

year period). Others have reported mean low marsh accumulation rates of 2.7 to 4.44 

mm/yr. (Bricker-Urso et al.1989, Vogel et al. 1996).  Using Surface Elevation Tables 

(SETs), micro-tidal marshes in New England have surface elevation mean increases 

reported to be 2.3 mm/yr. (Burdick and Peter 2015). These were collected over the past 

20 years representing a more inclusive estimation accounting for marsh subsidence as 

well as elevation gain. 

Ellisville Marsh’s mineral sediment supply is primarily from tidal and not 

upstream sources, as evident by slow feeder stream flow rates (Chapter 2) with low solids 

content (Chapter 4).  Ocean events that enhance sediment transport such as tidal surge, 

and wind and wave action, must be the primary contributors to the sediment in the marsh. 

Even during quiescent periods, suspended solids (mean concentration 6.65 g/L (+/- 0.01 
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g) of coarse, medium and fine sands per hour) were measured floating in with incoming 

tides (Figure 5.1), the sand likely held up on the surface by salt bonding between fresh 

and saline layers (Brady and Weil 1996). If just a small portion of this sand actually is 

intercepted by creek walls or plant structures and allowed to settle on the marsh platform, 

it alone could account for the high percentage of sand accretion, acting in effect as thin-

layer sand placement/deposition. Because Ellisville Marsh has little to no area to migrate 

landward, this propensity towards accretion will become increasingly more important in 

maintaining this resource in a balance between conversion to open water/lower elevation 

circumstances. Drastic increases in flow, like those brought about by dredging or storm 

breaches of the barrier spit and associated instantaneous increases in water level, can 

accelerate creek bank erosion and channel widening (Figure 5.7) that counteract the 

positive effects of sediment deposition (Fagherazzi et al. 2004, 2012, Ganju et al. 2017, 

2019, Morris and Currin 2013).  It is likely that a balance between the two situations has 

existed over time, and at least partially, accounting for the sustainability of this platform 

to date. 

The median percent by weight concentration of sand within the top layers of the 

fixed soil profile locations and that accumulated on the accretion plates as expected are 

not equivalent. Because the accretion plates were fewer in number than the number of 

soil profiles and there were extremes in accumulation even across low elevation plates, 

the concentrations of sand were compared to the medians in the profiles. It may be that 

the accretion plates registered such high sand concentrations given the phenomenon of 

sand flotation during quiescent periods and considering the increased storm activity 

during the yearlong accretion period (Applied Coastal Engineering 2017). 
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Figure 5.7. Calving of channel banks following increased winter flow events 
(Photographed July 2012) looking west from channel inlet in Ellisville Marsh, 
Plymouth, MA. 
 
 

Surface layers of aggregated soil profiles showed a median sand percentage in the 

top 30 cm peaking at approximately 50% in high elevation plots, as opposed to the higher 

mean accretion residual sand content of 64% in the top few centimeters of deposition. 

These percentages, when supplemented with the inorganic silt and clay fraction, are 

similar to those described by Vogel et al. (1996), where 80% was the total inorganic 

component.  
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CHAPTER 6 

SYNTHESIS AND MODELING  

6.1 Introduction 

There are many numeric models available for the study of saltmarsh processes 

and platforms (Fagherazzi et al. 2012), particularly as regards to these systems’ resilience 

in the face of ongoing sea level rise, storm surge and other hydrology changes. Models 

range from empirical and physical models of a single point, a single transect of elevation, 

two dimensions across a marsh platform, and landscape scale coastline models. The more 

intensive models cover results of complex biological and geomorphic processes (UVVI, 

DELFT3d), while others simply consider basin fill (salt marsh species biomass keeping 

pace with increasing water elevation) dynamics, also known as “bathtub” type models 

(e.g. SLAMM) with some modifications made for accretion. 

Criticisms of current mechanistic models include, infrequent temporal sampling, 

single point measurements of elevation underestimating spatial variability, and neglecting 

open water conversion and the impact this has on cascading lateral marsh erosion 

(Fagherazzi et al. 2012; Alizad et al. 2016; Mudd et al. 2009; Ganju et al. 2017; Smith et 

al. 2017). The time frame of this Ellisville Marsh study (10 years overall, with 4 years of 

intense data collection), and its spatial coverage for inundation measurement and percent 

cover at both plot and landscape scales, allows consideration of marsh resilience by 

taking advantage of the physical, chemical and biological processes observed over the 

longer-term. 
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6.2 Conceptual Model 

 
A conceptual framework for modeling approaches was formulated a priori (Figure 

1.7) to help describe productivity response relationships of the Spartina alterniflora 

population in Ellisville Marsh to hydroperiod fluctuations, as well as to other 

environmental and climatological variables (Figure 1.7). The ultimate goal being to help 

answer the question as to whether it is healthier for the salt marsh grasses to have the 

inlet periodically opened by dredging (post dredge condition), or to leave the grasses to 

undergo the periodic oscillations of a natural coastal pond with limited communication 

with Cape Cod Bay (pre-dredge condition). Both endpoints of the pendulum arc have 

their own unique implications. 

The conceptual framework for marsh function describes the interacting forces and 

processes that influence the ultimate productivity of S. alterniflora. It addresses three 

state variables undergoing change (pore water, soil/sediment, and the S. alterniflora plant 

itself), two forcing functions (large arrows) of climate and tidal exchange, four process 

functions (small numbered boxes 1- 4), and twenty measured variables (boxed variables 

adjacent to each bold-boxed state variable) that were assessed. Functions 1 through 4 are 

process functions prescribed by variation in tidal amplitude (and by default hydroperiod) 

and climate fluctuations in precipitation, temperature, growing degree-days and light 

conditions necessary for growth of the plant. These in turn influence nutrient and oxygen 

content in pore water and sediment available for plant root uptake and microbial 

degradation, the amount of sediment available for deposition, and rates of photosynthesis. 
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6.3 Objectives  

Using the data from this study, four modeling approaches were used in an attempt 

to understand the influences of dredging on marsh resilience, with emphasis on how 

resilience relates to the productivity of S. alterniflora.  The approaches are: 

 1). To determine vertical accretion, the use of the numerical Morris (©2010) Ver. 

5.4 Marsh Equilibrium Model was employed under pre and post dredge sea level and 

tidal range conditions using Ellisville Marsh derived data as inputs. This vertical 

resilience information was then combined with the previous UVVI assessment for 

horizontal resilience (Chapter 3) to obtain an overall two-dimensional estimate of 

Ellisville Marsh resilience. This model addresses the “Soil/Sediment” and “Plant” state 

variables and uses several of the Ellisville Marsh measured variables (e.g. BGB, ABGB, 

TSS, Stable Plant Fragment Content, bulk density and accretion rate) in relation to tidal 

range depth (D). 

2.) Fluctuations in hydroperiod result from episodic dredge operations or from 

events like storm surge (as described in Chapter 1), as well as those induced less 

dramatically from progressive sea level rise (currently reported as 0.282  +/- 0.0.016 

cm/yr. per Boston, Massachusetts buoy # 8443970, April 2019). Because it was shown 

that the measured increase in hydroperiod within Ellisville Marsh did not correspond 

directly to the changes in tidal range brought about by dredging (Chapter 2), reliance on 

using tidal range (D) as the principal driver of salt marsh restoration and/or S. alterniflora 

growth limits may be remiss, particularly in situations where the interior marsh micro-

topography, creek/channel architecture or soil pore space structure/soil particle sizes 

prohibit immediate and complete communication with tidal flow. Consideration of any 
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lag in hydroperiod duration over the marsh’s surface may be the more influential to plant 

growth and is warranted. Therefore, it was used as the variable replacing typical tidal 

range or depth of water (D) estimates to evaluate this study’s data (after discernment that 

units would be interchangeable). 

3.) Next, in an attempt to explain why re-colonization of bare mudflat (3 hectares 

in the marsh’s western portion) by S. alterniflora did not occur from 2011-2013, or for 

that matter for 9 years post dredging, assessment of two fitness measure proxies, 

calculated photosynthesis (PN) and plant height (PH) for S. alterniflora, were considered 

along with the density measure of below ground biomass (BGB) in order to evaluate the 

possible existence of an Allee effect that might negatively influence re-establishment. An 

Allee effect is considered a positive relationship between individual fitness and any type 

of density measure (Stephens et al. 1999). This effectively is a consideration of the 

“Plant” state variable’s productivity responses (Figure 1.7).  

On the West coast of the United States and in China, S. alterniflora is considered 

an invasive plant (Davis et al.; 2004; Zhu et al.; 2019), yet it too has certain optimal 

growth rates and has been known to be demonstrate a weak density dependent Allee 

effect during colonization (Buckley and Metcalf 2006; Davis et al., 2004).  In areas of 

low population density, plants producing seed (representing potential increase in fitness 

for the population) may effectively lose the seed until rhizomatous growth brings the 

plants into close enough contact that any produced seed will be trapped (Davis et al., 

2004). This is the opposite of the Allee effect that describes an increase in fitness with 

increase in density. Because taller S. alterniflora plants are more likely to undergo 

flowering and possess inflorescences (Valiela et al. 1978; Ryan et al. 2007; and Crosby et 
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al. 2015), and because PH is significantly linearly related to inundation period (HP) 

(Chapter 3), it was reasoned that plant height might serve as a proxy for seed set and this 

would in turn, serve as a fitness component to be described as it relates to the density 

measure of below ground biomass (BGB). Here BGB is important for the plant’s 

perennial outcome, and is a primary deterrent to erosion and critical to accretion. Without 

plant root stabilization, the plant may be uprooted, and surrounding sediment eroded 

during fast tidal flows and high wave energy. 

4.) Finally, a comparison was made of the best fit non-parametric linear models of 

productivity as they relates to a suite of environmental covariates and certain climate 

variables (Figure 1.7), with the goal of using a non-destructive, sentinel parameter with 

minimal associated measurement/process error, that in turn is related to the hydroperiod 

status of the salt marsh. 

6.4 Modeling Methods  

6.4.1 Vertical Accretion Modeling 

Modeling by Mudd et al. (2009) and Morris et al. (1986, 2002, 2016) uses an 

overall mass conservation approach with above ground biomass per unit area (B) as the 

changing dependent variable over time and depth (D). Both below and aboveground 

fractions are represented as live below ground (dry root/rhizome biomass) and live above 

ground (dry leaf and shoot biomass). The root and rhizome to shoot ratio (RRTS) along 

with belowground biomass turnover estimates and peak standing biomass and all are 

incorporated into a phenomenological quadratic determination of the dependent S. 

alterniflora response variable (B) optimum in relation to depth of water (D).  
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Increases and decreases in S. alterniflora biomass (growth and death) relate to 

increases and decreases in marsh surface elevation, wrack and sediment deposition from 

tidal flow, and below ground biomass turnover caused by microbial degradation. The 

greater the depth or longer a point or an area is under water per tidal inundation, the 

greater time allowed for materials to settle, meaning greater amounts of accretion with 

heavier particles deposited before lighter weight fines and organic material. If this 

deposition exceeds subsidence and erosion, then elevation builds. Longer periods of 

water pressure exerting downward force on the sediment surface can also cause greater 

amounts of compaction of peat/below ground biomass if minimal or no live root network 

is present. Increasing the nitrogen and oxygen available for microbial processes can 

accelerate decomposition of peat further contributing to subsidence (Deegan et al. 2013, 

Wigand et al. 2018, and Morris 2002).  In these cases, despite sedimentation, there is less 

to resist subsidence and more chance of erosive tides causing scouring of any deposited 

materials. 

 Finally, the greater the density (and complexity of plant structure) of above 

ground vegetation, the greater chance that materials (wrack and sediment) transported by 

tides will become trapped and contribute to accretion and the larger the detritus/wrack 

load when the plants senesce and decay every year. Ultimately, if accretion does not keep 

pace or outpace any rise in water level within the marsh, over time the elevation of the 

marsh platform will decline to the point where it is submerged so often that vegetation 

will not grow and an intertidal mudflat is formed as likely the case for Ellisville Marsh 

from 1987 through 2010. 
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Process function [4] (Figure 1.7) is the result of accumulation minus subsidence. 

Accumulation is the result of deposition of both mineral and organic material accretion 

minus their erosion.  Accretion in a salt marsh as described by Morris et al. (2002, 2009) 

is as follows: dS/dt = m (q + ksBs) D2/T+ (kr + Br) (Eq.1),  

where, dS/dt = accretion rate (g/m2/year) 

S = accretion per unit surface area (g/m2)  

 t = time (year) 

 m = suspended solids (g/L) 

q = surface loading rate/surface settling velocity, is treated as a constant 

(L/m2/year) or in more recent reports by Morris and Currin (2013) Q is units of 

g/cm3/yr. 

ks = efficiency of sediment trapping by vegetation, is treated as a constant and is 

species dependent (%) or in more recent descriptions of Morris and Currin (2013) 

Ks is in units of cm-1yr.-1. 

Bs = annual end-of-season above ground standing biomass density 

(g biomass/m2/year) response described as from previous study (Morris 2002); 

Bs = aD+bD2+c (Eq.2), where a, b, c = parabolic parameters describing the 

growth optimum vs. D. Note: the nomenclature for a and b is essentially 

reversed from the algebraic form of a parabolic equation where, 

y~ax2+bx+c 

D = (unit less) = MHW – EL/MHW-MLW, where MHW equals mean high water, 

EL equals platform elevation of interest, and MLW equals mean low water 

T = tidal range (m) 
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kr = refractory fraction of annual root and rhizome production, treated as a 

constant (%) (collected from Ellisville Marsh and measured as stable plant 

fragment content (SPFC)) 

Br = annual root and rhizome production (g/m3/yr.) as a function of root to shoot 

ratio (m) and below ground biomass turnover rate (some fraction of 1/year) 

After solving for dS/dt it is then divided by the bulk density (g/m3) of the marsh soils, 

giving the expression units of elevation (m) per time (yr.) that can be compared against 

sea level, changes in tidal range and any episodic rise in elevation over time. 

In this Ellisville Marsh study, all inputs (Table 6.1) were measured with the 

exception for the value of q, known as the surface-loading rate (or settling velocity). This 

variable is similar to the value used to design settling clarifiers in the wastewater 

treatment industry. Assuming the vegetated area (m2) of S. alterniflora platform is what is 

loaded and has the opportunity to accrete solids via biomass interaction, then using the 

calculated area from the 2018 land cover assessment enabled determination of the loaded 

area to which the trapping and turnover estimates are relevant.  Using open channel flow 

area estimation and velocity measurement using timed rate of travel of a floating object, a 

rough approximation of the flow rate was obtained (26,000,000 MG per tidal fill) and a 

consequent q value equal to 2.66 L/m2/yr.  More recent literature (Morris and Currin 

2013), reports the settling rate (large Q) in units of g/m3-yr and has altered the Ks value to 

1/m-yr. units. 

For the Ellisville assessment, the below ground biomass turnover rate was varied 

around a 0.4/yr. value derived from literature (Ellison et al. 1986).  When positive 

oxidation-reduction potential conditions were present it was arbitrarily assigned a value 
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of 0.6/yr., reflecting the increased microbial degradation under aerobic conditions. 

Subsidence due to compaction/tectonic movements was considered to have been minimal 

in the study time period, so no subtraction from accumulation was performed.  The 

estimated vertical land movement for the NOAA Boston long-term tidal gauge station 

would only have had a very small effect at  -0.84 mm/yr. (Zervas et al. 2013). 

 

Table 6.1. Input Variables to Marsh Equilibrium Model v. 5.4 for pre (2010) and 
post (2013) dredge conditions at Ellisville Marsh. Asterisk (*) indicates post dredge 
input same as pre-dredge condition. 
 

Input Variable units 
Pre-

Dredge 
Post 

Dredge 
    

 
  

Sea Level Forecast cm/100yr 100 * 
Sea Level at t=0 cm 0 * 
20th Century Sea Level Rise Rate cm/yr. 0.3 * 
Mean Tidal Range/Amplitude m 1.02 1.2 
Marsh Elevation at t=0 cm 74 * 
Maximum Elevation Growth Limit cm 120 * 
Minimum Elevation Growth Limit cm -20 * 
Optimum Growth Elevation cm 50 * 
Maximum Peak Biomass (ABGBD) g/m2 2072 1544 
Below Ground Biomass to Shoot Ratio (RRTS) m-1, g/g 3.15 2.13 
Refractory Fraction Below Ground Biomass 
(SPFC) % 0.17 * 
Below Ground Biomass Turnover Rate yr.-1 0.4 0.6 
Maximum (95%) Rooting Depth cm 30 * 
Trapping Coefficient (ks) % 0.04 * 
Surface Loading Rate (Q) g/cm3/yr. 0.0018 * 
Suspended Solids Mineral Concentration (m) mg/L 66 * 
Suspended Solids Organic Concentration (m) mg/L 0 * 
Accretion Rate (dS/dt) g/cm2/yr. 0.551 * 
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6.4.2 Hydroperiod Substitution Modeling 

Since the water depth in the model above is proportionate to the length of time 

that any one point is under water (Kefelegn 2019), hydroperiod (rather than D) was 

selected as a more appropriate proxy as the independent explanatory variable given the 

observed lag following dredging. It too becomes unit less when substituted by dividing 

the spring to neap total hydroperiod for the corresponding entire tidal period length 

during the same spring to neap time frame (32,024 minutes).  The unit less D variable is 

considered equal to elevation divided by tidal range where MHW-EL/MHW-MLW 

(Morris 2002). This was replaced with this study’s measured spring to neap cycle HP 

variable, also made unit less using per 21 day tidal duration, in order to determine 

constants for import into the biomass density calculation to see if a difference in outcome 

of this altered model was evident. This approach is justified in that hydroperiod reflects a 

lagged response to dredging, while the unit less D variable, reliant on normalization by 

tidal range, did not. This is further warranted because changes in tidal range in this study 

did not correspond with the chemical (REDOX shift) and biological (ADH, biomass 

(AGB and BGB)) declines, as did HP.  This step primarily addresses changes to the tidal 

forcing function (Figure 1.7) as it appears across the marsh platform and accounts for 

variation in micro-elevations across the marsh which digital terrain models or elevation 

surveying might not detect.  

The same parabolic parameterization of the relationship between peak biomass 

(ABGBD) and unit less HP (rather than unit less depth) was conducted using the non-

linear regression (nls) function in R ver. 3.3.3. The coefficients were used to identify the 
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peak biomass estimate and the extent of inundation time in the MEM; in order to assess 

whether resilience claims from the tidal range induced model can compare to the 

hydroperiod dictated model. 

6.4.3 Fitness versus Density Modeling 

 Fitness proxies of PH and plant photosynthesis (PN) were modeled using 

parametric techniques with theoretically representational phenomenological (exponential) 

and mechanistic (Ricker) deterministic functions and the normal error distribution. The 

dependent PH and independent BGB variables for the 56 S. alterniflora plots were 

measured outright each of four years. The measurement error around PH was likely small 

as the plant heights were not a complex measurement and the three tallest plants were 

measured from each plot across the 4-years by the same operator. The BGB 

measurement, however, was more likely to have contributed error given that it is virtually 

impossible to remove all entrained soil particles during washing without losing fine root 

material. The method for determining the net rate of dry matter production (PN) in 

g/plant/hour of S. alterniflora canopy using equations put forward by Morris (1982) 

probably contributes process error in that the constants (ψ,η, λ, ρ, α) used for calculation 

of Morris’s Pn were generated using greenhouse study which might vary from direct field 

CO2 determination methods.  

The equation used for calculation of photosynthesis was as follows (Morris 1982): 

Pn = FBT {ψNL/[(N+ή)(L+λ)]-ρ}  (Eq. 2) with slight modifications where, 
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F = fraction of canopy biomass that is photosynthetically active (g/g) (green vs. 

non-green biomass) - this data was collected during ABGB sampling as dead 

versus live fraction 

 B= dry biomass contained the top surface of the canopy (g/plant) 

 T = air temperature (˚C) 

ψ = maximum weight specific rate of gross production per degree of air 

temperature above 0˚C and below the plant’s temperature optimum (g/g-hr.-˚C); 

7.1 x 10 -4 +/- 1.7 x 10 -4 (g/g -˚C- hr.) 

 N = concentration of nitrogen in leaves (%) 

 L = solar radiation (mW/cm2) 

ή = % nitrogen of dry leaf weight that gives half saturation rate of response; 

0.36 +/- 0.29(%) 

λ = the value of L that gives half saturation rate of response; 30 +/- 10 mW/cm2 

ρ = weight specific rate of dark respiration per degree of air temperature;  

2.3 x 10-5 +/- 6.0 x 10 -6 (g/g -˚C- hr.) 

The available solar radiation for photosynthesis (L) was taken from monthly 

records for the period June through August (Perez, SUNY/NREL/TP-581-41364, April 

2007 Geospatial Data Science DNI Resource, Plymouth County) for a modeled time 

period from 1998 through 2009 and did not directly encompass the 2010 to 2013 study 

period. Note that this model assumes no interference with light transmission due to cloud 

cover as it was developed under greenhouse artificial lighting conditions. However, 

atmospheric moisture is compensated for in the incident light value and therefore, a 

separate cloud cover variable was not developed. Monthly measurements of temperature 
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for the growing season from June through August were obtained through the Plymouth 

County Municipal Airport (41.9097, -70.7294 degrees, USW00054769 (GHCN) 

ACIS/NOAA 2019). 

Stem density measurements were used to convert the biomass density (B) into a 

biomass/plant that are then used to calculate Pn. Nitrogen (N) was measured at the 

UMass Extension Service (Chapter 3). According to Morris (1982), this equation is an 

oversimplification of photosynthesis, but in the case of S. alterniflora in vitro 

experiments, this equation described most of the variation in S. alterniflora production. It 

does not consider precipitation as it is assumed that the soil is at field capacity. 

When plant height and photosynthesis fitness measures are plotted against below 

ground biomass (Figures 6.1 and 6.2), for both plot interior and fringe (bordering mudflat 

or creek) locations, what could be conceived as an Allee effect response for the Loess 

line of PH versus BGB shows a brief increase in fitness with increasing density, followed 

by a decrease and then plateau.  This functional shape suggests a possible weak Allee 

effect in the fringe population, but not in the interior population.  Its presence in the 

fringe plots might account for why, even though tallest plants are known to have more 

inflorescences and therefore set seed, the seed is more prone to losses next to open water 

situations and therefore colonization occurs slowly, if at all. The mechanistic Ricker 

function (f (x)=a*x*exp (-b*x)) that emulates this shape was chosen to substitute for the 

raw BGBD data.  A phenomenological fit of the exponential deterministic function 

represented as (f (x)=a*exp (b*x)) also may describe the data, so it too was tested. 
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Figure 6.1. LOESS graph of plant height (PH as cm) as a function of below ground 
biomass dry weight (BGBD as g/830 cc) density where Spartina alterniflora plots 
located along the fringe of the mud flat are shown in red and plots located in 
interior marsh are in blue-green. 
 

 
 
Figure 6.2. LOESS graph of photosynthesis (PN as g/plant/day) as a function of 
below ground biomass (BGB as g/830 cc) density where Spartina alterniflora plots 
located along the fringe of the mud flat are shown in red and plots located in the 
marsh interior are in blue-green. 
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The null hypothesis (Ho) for the above relationships between fitness indicator 

(PN or PH) and the density measure of below ground biomass (BGB) is that the 

distribution will follow a random process given by the continuous normal probability 

distributions as follows: y~ Normal (µ = 0, sd = σ) for both fitness proxies and both fringe 

and interior S. alterniflora populations. The Normal error distribution is appropriate 

given that both plant height and photosynthesis data are continuous and have previously 

shown a Normal/log Normal distribution independently.  

The alternate hypothesis (H1) is that the relationship between fitness indicator 

(PN or PH) and the density measure of below ground biomass (BGB) is a random process 

given by the Normal probability distribution for the residuals, with the fitness (y) varying 

as the Ricker function of x (y~ a*x*exp (-b*x) or as an exponential function of x, where 

y ~a*exp (b*x), for both PH and PN fitness proxies and both fringe and interior 

populations. 

The panel package (plm) within R 3.3.3 was chosen using normal errors to model 

the data. It is appropriate for repeated measures component of this data set and provides a 

robust determination of the error component that would result from heteroskedasticity, 

particularly given that 2012 plant growth had such a different appearance (Chapter 3). 

Values for BGB (g/830 cc) were converted to a per plant basis based on nearby stem 

density measurements. 

6.4.4 Modeling for Sentinel Indicator 

 Non-parametric redundancy analysis (a variant of constrained ordination that 

describes the linear relationships between two sets of continuous variables) was used to 

evaluate environmental and plant productivity indicators’ and their relationship to the 
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single species, S. alterniflora. Because salt marsh grasses grow in response to elevation, 

inundation, and a variety of other factors (Silvestri et al. 2005), and because S. 

alterniflora grows at the lowest elevation and acts as a “first responder” to tidal influx (as 

compared to other species of salt marsh grasses), the productivity metrics for this species 

alone were chosen for constrained ordination by relevant environmental variables using 

redundancy analysis (RDA).  

This provided an extension of the multiple regression analysis whereby only a 

single dependent variable was assessed and extraneous or redundant independent 

variables were first removed from analysis where appropriate. It was an appropriate test 

because it was applied to one species only where linear relationships (axes lengths < 2 

standard deviations using Decorana test) between many of the environmental and 

productivity status indicators have been previously established.  For example, growth has 

been shown to vary with salinity, as with tidal datum or range (McKee and Patrick 1988). 

6.5 Results and Discussion 

The results of the four modeling approaches are presented in below and are discussed in 

the following sections. 

6.5.1 Multivariate Analysis of Metrics 

6.5.1.1 Soil Types Constrained by Below Ground Variables 

 A redundancy analysis (RDA) of soil particle type (organic matter (OM), CLAY, 

SILT, and SAND) as constrained by total and average hydroperiod (HP), distance to 

closest drainage ditch (DTD), below ground biomass (BGB), percent sulfur (PERCS), 
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salinity (SAL), and redox conditions (REDOX) was performed to provide insight as to 

how these properties might relate to one another (Figure 6.3).  This approach whereby 

biotic variables (rather than separate species) are constrained by abiotic variables across 

sites has been used successfully elsewhere (Klanderud et al. 2015, McCune and Grace 

2002). 

The RDA1 and RDA2 axes explain 85 and 54%, respectively, of the relationship 

between the soil types and constraining properties.  Sand and organic matter (OM) are 

best explained by the RDA1 axis. Sand and silt have an inverse relationship to one 

another while clay appears relatively unrelated to sand and silt as indicated by their 

orthogonal vectors. The percent total sulfur is most closely related to the silt 

concentration, while redox, salinity, distance-to-ditch and belowground biomass variables 

are more closely tied to the OM and clay content of the sample.  Total hydroperiod 

relates most directly to the finest (CLAY) particle size and co-varies with PERCS. 

These findings make sense given the assumption that the longer the water sits 

above a location, the more likely that sediment will settle – the heaviest would settle in a 

shorter time period, followed by the smaller clay particles that take longer. Therefore, as 

hydroperiod increases there is more chance for slower settling clay particles to deposit. 

HYDRO and REDOX are inversely related corroborating their relationship discussed in 

Chapter 4. The overall constraining analysis explains 46% of the variance (p = 0.007) and 

indicates the strong impact that the environmental constraints have upon the SAND and 

OM components of this particular marsh system. 

 



129 129 

 

 

Figure 6.3. Redundancy analysis (RDA with scaling =2) of soil particle size fraction 
(red) and relevant environmental variables (blue) explaining 46% of variation with 
soil core locations as black, n=27, soil fractions = CLAY, SAND, SILT, and OM 
(Organic Matter) constrained by percent soil sulfur (PERCS), below ground 
biomass (BGB), salinity (SAL), redox potential (REDOX), distance-to-ditch (DTD), 
and total 21-day hydroperiod (HYDRO). 
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6.5.1.2 Spartina alterniflora Productivity Constrained by Environmental Variables 

Each year’s productivity data were constrained against environmental variables 

for all plot locations that contained greater than 25% cover S. alterniflora (Figure 6.4). 

The proportion of variation explained by the constrained analysis ranged from 30% in 

2010 to 22% by 2013. Unexplained variation may be attributed to climate variables or 

other factors not evaluated in this RDA. Overall, the ordination was statistically 

significant when tested using ANOVA (p<0.005 for 2010-2011, p<0.02 for 2012-2013 

data) and both axes were also considered significant. 

 When interpreting the angles between just the environmental vectors an inverse 

relationship was discovered between the Haliaspis abundance and the pore water salinity 

for 2010 and 2011 years’ data. Haliaspis apparently had a preference for sites with lower 

porewater salinities. Similarly, but not surprisingly, an inverse relationship between NH4 

porewater concentration and REDOX potential was observed possibly reflecting that as 

the REDOX potential declines, the NH4+ concentration in the porewater increases. This 

trend has been documented in many studies of marsh porewater nitrogen content and 

REDOX conditions (Howes et al. 1981, 1984, 1994; Morris et al. 1984).  

The vectors for total hydroperiod (HYDRO) and PH were found to travel in 

essentially the same direction due to their obvious inherent covariance (also demonstrated 

in Chapter 3). Plant height was most closely related to the HYDRO vectors and BGB was 

most related to the porewater SAL vector. However, the occurrence of the PO43 vector 

emulating the hydroperiod direction, although at a lesser magnitude, is counter to the 

earlier made assumption that orthophosphate was flushed out of the pore spaces (Chapter 

4) due to increased flushing or greater tidal range. This would have necessitated a 
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demonstrated inverse relationship where as HYDRO increases the concentration of PO43 

should decrease. 

Above ground biomass (ABGB) and plot percent cover (PCOVSA) were very 

closely related suggesting that continued harvesting of aboveground biomass is not 

necessary and that percent cover is closely related to ABGB. These relationships were 

determined by drawing a perpendicular from the point represented by the productivity 

indicator to the closest environmental vector. 

Akaike Information Criteria (AIC) analysis was used to determine the best-fit 

model from the suite of environmental variables (Table 6.1). Because of the parameter 

numbers and relatively small sample size the AIC was corrected to AICc for determining 

model weights.  The top weighted models between years had the variables HYDRO, 

SAL, HAL, and, unexpectedly NH4 given its similarity each year, as common 

components towards determining the distribution of productivity indicators. 
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Figure 6.4. Redundancy analysis (RDA with scaling = 2) of each year’s Spartina 
alterniflora productivity indicators (red) versus environmental constraints (blue) in 
Ellisville Marsh plots (black), n=56. Above ground biomass dry (ABGD), below 
ground biomass dry (BGBD), plant height (PH), percent cover (PCOV), and stem 
density (SD) are the productivity variables, while salinity (SAL), redox potential 
(REDOX), distance-to-ditch (DTD), total 21-day hydroperiod (HYDRO), Haliaspis 
count (HAL), porewater sulfide concentration (S2), and porewater ammonium 
concentration (NH4) represent the environmental suite of constraints. 
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Table 6.2.  Top weighted models (red) assessing Spartina alterniflora productivity 
variables ranked by each model’s average Akaike’s Information Criteria (AICc) 
value corrected for small sample size (n=56), relative likelihoods (L) and Akaike’s 
weights (ω) across 100 iterations for k (number of factors).  
 

        Rank Year  Model k AICc ΔAICc L ωi(AICc) 
1 2010 HYDRO + NH4 + SAL + HAL 4 424.31 1.29 0.75 0.29 
2 

 
HYDRO + NH4 + SAL 3 425.61 1.64 0.65 0.26 

3 
 

HYDRO + NH4 2 427.24 5.31 0.11 0.04 
4 

 
HYDRO 1 432.55 2.51 0.03 0.01 

5   
HYDRO + HAL + REDOX + S2 + NH4 + 
PO43 + SAL + DTD 8 435.06 0 1.00   

1 2011 SAL + HYDRO + HAL + S2 + DTD 5 406.64 0.82 0.91 0.22 
2 

 
SAL + HYDRO + HAL + S2 4 407.46 0.94 0.89 0.21 

3 
 

SAL + HYDRO +HAL 3 408.41 1.00 0.90 0.21 
4 

 
SAL + HYDRO 2 409.40 3.23 0.31 0.07 

5 
 

SAL 1 412.63 -1.60 0.23 0.06 

6   
HYDRO + HAL + REDOX + S2 + NH4 + 
PO43 + SAL + DTD 8 411.03 0 1.00   

1 2012 HAL + SAL + NH4 3 405.11 0.85 0.97 0.38 
2 

 
HAL + SAL 2 405.95 2.69 0.40 0.16 

3 
 

HAL 1 408.64 -0.95 0.17 0.07 

4   
HYDRO + HAL + REDOX + S2 + NH4 + 
PO43 + SAL + DTD 8 407.69 0 1.00   

1 2013 HYDRO 1 404.84 0.62 0.48 0.29 
2 

 
HYDRO + SAL 2 405.46 0.21 0.15 0.09 

3   
HYDRO + HAL + REDOX + S2 + NH4 + 
PO43 + SAL + DTD 8 405.67 0 1.00   

 

6.5.2 Plant Height as a Sentinel Indicator 

 Mean above and belowground biomass for all plots decreased the years following 

dredging and their measurements represent a destructive sampling technique, one that in 

times of threatened salt marsh conditions should not be routinely repeated. A positive 

linear relationship existed between plant height and hydroperiod (p<0.001, R2 =0.12, 

pooled data across years), but the same could not be said for the SD or ABGB 

measurements (Figures 3.6 through 3.8). Plant height was related to HP, REDOX, SAL, 

and DTD using multiple linear regression (p=2.49 x 10 -10, R2=0.21) and HP (HYDRO), 

SAL and DTD were also components of the highest weighted models describing 
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productivity in the RDA above. Mean plant height that was also found to positively vary 

with mean summer season rainfall totals (p<0.001, R2 = 0.95).  

 

 

 
Figure 6.5. Mean Spartina alterniflora above ground biomass (g/0.025m2) and mean 
plant height (mean +/- sd, n=56) in relationship to total precipitation for the summer 
growing season (June through August), Ellisville Marsh, Plymouth, MA for years 
2010 through 2013. Precipitation data were obtained through the Plymouth County 
Municipal Airport (41.9097, -70.7294 degrees, USW00054769 (GHCN) ACIS/NOAA 
2019). 

 

Because PH has a consistent positive relationship with hydrology factors (HP, DTD, 

precipitation, SAL and REDOX) as compared to above ground biomass and hence, 

percent cover, it would serve as a more rapid indicator of hydrologic conditions than plot 

percent cover estimates. 
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6.5.3 Fitness Versus Density Relationships 

 
The distributions of raw PH data, assigned as from an interior or mudflat fringe 

locations (LOC), have different shapes when plotted against the density measure of 

below ground biomass (BGB) (Figures 6.1 and 6.2). They also have obvious differences 

in height. The results of the linear panel modeling using R ver. 3.3.3 were significant (p = 

9.549 x 10-9, R2 = 0.26) and showed effects of LOC (p<0.001) and YEAR (varied 

significance depending upon year) and BGB (as a Ricker function of BGB as g/830 

cc/plant, p<0.05) on the continuous plant height (PH) variable. For every unit change in 

the Ricker function of BGB, there was a 0.075 unit change in plant height. All other 

function modeling with PH or PN as the fitness measure as related to BGB was 

insignificant. Figure 6.6 shows the PH dependent variable with a deterministic Ricker 

function superimposed. As a check on the parametric panel model, bootstrapped 

confidence interval determinations (10,000 permutations with replacement) of the 

coefficient for the Ricker function of BGB as it relates to PH were 0.021 (2.5%) and 

0.165 (97.5%) and the range did not include 0. The bootstrapped standard deviation 

around the coefficient (effectively the empirical standard error) was +/- 0.037. 

Plant heights are taller at the fringes of mudflat and creeks as compared to those 

in the interior of the marsh. The taller fringe plants’ relationship to BGB density follows 

what appears to be a weak Allee effect, followed by a decline in fitness as density 

increases (Figure 6.1).  This means that fitness is greater when densities are low which 

could be an example of resource inhibition/scarcity at higher BGB densities. Interior 

plots further away from flow conveyance structures with limited flow will not experience 

as frequent inundation when flows are restored, while plots next to open water in general 
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experience inundation regardless of flow restrictions.  Being more frequently inundated 

possibly reduces salinity build up in the sediment and increases opportunities for 

exposure to suspended or dissolved nutrients allowing greater plant heights at the fringes. 

 
 
Figure 6.6. Possible applicable deterministic reltionship for plant height fitness 
measure to below ground biomass density measure as Ricker function superimposed 
on raw data. 
 
  
Coupled with the lack of horizontal resilience demonstrated by the UVVI comparison, 

this may explain why re-colonization does not occur, i.e. fringe plants exist where erosive 

forces are higher and despite exhibiting greater fitness at low BGB densities do not 

overcome.  Possibly, the taller plants, putting more of their photosynthate energy into 

reproduction, have less to proportion to below ground biomass, and thereby erosion 

resistance. Their proximity to open water may ultimately mean greater erosive potential 
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of BGB. In addition, losses of seed to stronger tidal flows that carry seed away from 

protected areas that might have provided germination success are greater at fringe 

locations. 

6.5.4 Vertical and Horizontal Resilience to Sea Level Rise and Episodic Changes 

Figure C.1 through C.3 outcomes from the MEM (ver. 5.4) using pre and post-

dredge, as well as episodic conditions, are provided in Appendix C (copyright permission 

granted 6/17/19 from J.T. Morris to allow presentation of input/output panels). In 

summary, the marsh platform surface survives the increase in sea level rate under both 

pre (102 cm) and post dredge (120 cm) tidal range conditions (Figures C.1 and C.2). 

Post-dredge marsh elevation converges with sea level rise more quickly than under pre-

dredge conditions most likely due to lower root/rhizome to shoot ratios. This response is 

facilitated by the model’s use of maximum peak standing biomass (the highest growing 

season value encountered at harvest). If a higher suspended solids value were to be used, 

similar to the content present in Ellisville Marsh due to the ever-present disturbed nature 

of sands, whether due to dredging or storm events, this would contribute even further to 

marsh resilience in the face of current sea level rise rates (0.3 cm/yr.). Without further 

ocean or landward expansion of the marsh allowed, and if a series of 20 cm episodic rises 

occurs like that encountered following 2011 dredging (assuming the barrier spit has 

caused near blockage each year), the marsh submerges much more quickly (Figure C.3).   
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6.5.5 Hydroperiod Substitution 

The result of the functional quadratic relationship ABGBD ~ a (D) +b (D^2)+c 

(Morris (2007), Mudd et al. (2009), Fagherazzi (2012), Kirwan (2012)), where D is 

substituted with Ellisville Marsh hydroperiod data is shown in Figure 6.7 (A. and B.). 

This parabolic relationship (for just plots containing S. alterniflora, n=224) of the 

ABGBD to HP (made unit less relative to spring neap cycle duration) resulted in 

parameters a, b and c equal to -4017, 1998, and 519***, respectively with a Pearson’s r 

equal to 0.13.  Bootstrapped confidence intervals on c (which reflects the height of the 

parabola along the y-axis and was the only significant parameter) were 275.5 (2.5%) and 

761.5 (97.5%).  The lines drawn from the intersection of the red abscissa line to the x-

axis (Figure 6.7 B.) indicates that all of Ellisville Marsh’s plots are inundated less than 

68.5% of the time and beyond this point standing biomass will be non-existent. This is a 

similar finding to the MEM inundation time output for pre- and post dredge conditions 

(Figures C.1 and C.2, Figure 6.7 C.) where marsh is inundated less than 60% of the time 

over the 100-yr. time frame.  The bulk of the Ellisville Marsh plot data during the spring 

to neap cycle period studied depicts inundation occurring over approximately 25% of the 

total tide cycle time frame (Figure 6.7 B.) equating to a 3 hour hydroperiod. 

Ellisville Marsh’s measured standing biomass (as measured from 2010 to 2013 

growing seasons) relationship to hydroperiod appears to rest at the flatter, optimum area 

of the curve Figure 6.7 A. and B.  When taking the derivative of the curve, the rate of 

change in above ground biomass is positive until it becomes 0 as it approaches a 

relativized HP of 0.25 (inflection point) and then the rate of change in biomass becomes 

negative (Figure 6.7 D.). When linearizing the quadratic equation by taking the log of 
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both sides (log ABGBD = log (a*HP) + 2*log (b*HP) +log (c)), the intercept of the linear 

model is highly significant, and the log (a*HP) coefficient is significant (p = 0.038), but 

the remaining variables are dropped because of co-linearity.  Using the AICc function 

both an intercept only and a full nls model are considered to have equal weights, meaning 

that for the range of hydroperiod data measured there is no difference from a straight line, 

again possibly confirming that the marsh plots are functioning at or near the optimum of 

the hydroperiod range. Any further increase in HP beyond this optimum is likely to result 

in further declines in biomass. 

 
 
Figure 6.7. Hydroperiod (HP) substitution for depth in non-linear parabolic 
function (A. and B.) estimation of parameters a, b, and c for equation, ABGBD ~ 
a*HP^2+b*HP+c, where a = -4017.118, b =1998.186, and c = 518.498 with white 
oval representing predominance of measured Ellisville Marsh data. C. Marsh 
Equilibrium Model v. 5.4 output corresponding to hydroperiod substitution findings 
using lower functional biomass concentration equal to c (vertex). D. Derivative of 
HP vs. ABGBD data showing positive rate of change in relationship until xvec(HP) 
reaches 0.25 (equivalent to 3 hours of a 12 hour complete tidal cycle). 
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6.6 Study Limitations 

The modeling ignores ice and pressure induced compaction and erosion, 

evapotranspiration rates, direct measurement of seed production, dispersal, and 

germination, storm-generated wrack effects, and groundwater input. It focuses on the 

Spartina alterniflora population and does not consider competitive forces exerted by 

other species (other than Haliaspis). The obvious impacts of reversal of oxidative 

conditions pre and post-dredge on benthic organisms and microbial populations were not 

measured, nor were the exchanges of macro and micronutrients, and oxygen by roots via 

active and passive pathways explored in their entirety (Figure 1.7 process functions 2 and 

4).  Because the sampling of above and below ground biomass were from two different 

areas to prevent degradation of the plot percent cover, and furthermore because the stem 

density measurements used to convert between below ground biomass on a volume basis 

to a per plant representation were from different areas, this means that the BGB can have 

different interpretations. Finally, caution must be used when assessing the deterministic 

functions where limited or zero data at the tails of the distributions may give a biased 

representation. 

6.7 Discussion, Implications and Scope of Inference for Ellisville Marsh’s Future 

Sustainability 

The impact of inlet opening on Ellisville Marsh and the changes in hydrologic conditions 

provided favorable conditions for tall S. alterniflora expansion (as indicated by increases 

in percent cover) with the following exceptions: 
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• Previous die-off areas that had converted to mudflat did not show reestablishment, 

and, plots in near mud flat margins showed an overall decline in S. alterniflora 

fitness (as determined from calculations of photosynthesis and plant height) with 

increasing below ground biomass density; a slight increase in plant height as a 

fitness measure with low below ground biomass density was apparent in the 

fringe locations and followed a Ricker functional approximation and may 

represent a weak Allee effect at least initially preventing invasion and spread. 

Short Spartina alterniflora biomass (below and above ground) decreased 

following dredging and percent cover estimates showed only a small 

improvement for tall S. alterniflora between pre- and post-dredge conditions for 

plot scale estimates, however larger improvements were evident using the 

landscape cover estimates. 

• Reversal of negative redox conditions to positive within the plant root zone did 

not meet the definition of characteristic salt marsh sediment by the second 

summer following dredging. This condition was corroborated by plant root 

enzyme activity findings for alcohol dehydrogenase that indicated decreased 

activity when redox conditions became positive possibly signifying more 

oxygenated conditions. These altered subsurface conditions are relevant to the 

unstudied benthic organisms and microbial populations, and ultimately, to the 

amount of carbon sequestered. These changed conditions can feed back to plant 

productivity by way of changes in mycorrhizal and bacterial populations 

surrounding the root and altered root exudates (Burke et al. 2003). 
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• This work used a unique approach for measuring hydroperiod directly rather than 

indirectly through use of elevation.  It allowed detection of a delay in hydroperiod 

response to tidal range rectification that would not have been detected using water 

and land surface elevation only. Repeated lags and the coincident effects of 

increased drainage following future inlet openings would likely show similar 

negative effects on above and below ground biomass, and by extension, vertical 

resilience.  

• Vertical elevation was deemed to keep pace and exceed sea level rise scenarios 

under both pre dredge and post-dredge input conditions over an approximate 100-

year time frame using the MEM version 5.4, while horizontal resilience was poor 

(pre-dredge UVVI equal to 0.7) to slightly improved post dredge (UVVI of 0.66).  

High mineral suspended solids may have contributed to this improvement, as over 

the 10 year period from 2008 to 2018 the area covered by sand increased by 1.37 

times. When hydroperiod substitutions were made for depth measurements, the 

parabolic relationship between above ground biomass and hydroperiod agreed in 

part with the MEM vertical resilience approximations, with the exception that the 

peak biomass as input should realistically be the vertex of the curve taken from 

the hydroperiod parabolic function instead of maximum peak standing biomass. 

Convergence of the marsh elevation and mean sea level elevation was faster when 

hydroperiod was used rather than depth of water. The shape of the relationship 

was a parabolic representation of above ground biomass and hydroperiod with a 

hydroperiod of approximately 3 hours being the optimum inundation period. 
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• Although plot percent cover is the current permit-monitoring requirement thought 

to represent marsh health, the data could not be effectively transformed to 

represent proper normality conditions for classical significance testing and so, 

ultimately monitoring using this type of analysis is inappropriate.  Landscape 

cover estimates have their own inherent errors and are at the mercy of the tidal 

and climate conditions during which orthophotographic data is collected making 

comparisons across years at times difficult, if not impossible, for species that 

grow intermixed and require fine discernment. Therefore, the plant height 

correlation with hydroperiod was chosen as a more relevant relationship because 

of its linear variation with hydroperiod and other hydrologic parameters 

(precipitation, salinity and distance to ditch), and more importantly, its relevant 

modeled below ground biomass density dependency. 

• A new species for science was discovered in Ellisville Marsh. The insect, a 

parasitic wasp, Encarsia ellisvillensis, preys upon the Spartina alterniflora plant 

pest, Haliaspis spartinae.  H. spartinae and its inverse relationship to salinity was 

also a common factor (present in 3 out of the 4 top-weighted models) explaining 

productivity variation so that recording the presence/absence of the scale insect as 

at the same time as measuring plant heights, may be a signifier of freshening 

conditions due to decreased tidal flow (after accounting for the effects of annual 

precipitation differences).  

• Recommendations for future dredging include keeping the frequency of dredging 

to less than every two years between events (more frequently following large 

storm depositions) in order to forestall sediment oxygenation changes and 
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associated lags behind tidal range and large swings in hydroperiod. This involves 

build up of the barrier spit that contributes to blockage by approximately a 500-

foot length (equivalent to two years of accumulation) that is still effective at 

directing channel meandering ocean-ward (Applied Coastal Engineering, Inc. 

2017). Another approach might be to continue to allow ocean ward expansion of 

the salt marsh to the degree possible given increases in sea level and storm 

activity necessitating barrier spit evolution, while at the same time directing 

channel meandering away from coastal dune and bank by fixed, hard structures in 

the intertidal zone such as reef balls, or as demonstrated in the 2003 channel 

rerouting, discretely and functionally placed jersey barriers. The protection of the 

coastline afforded by the barrier spit would be an added benefit. 

• As of this writing, there are plans to permit construction of a replacement rock 

jetty to the north side of the channel and to supplement this project with some 

level of dune replenishment. This may repair losses of dune that were observed 

during 2012 and may help to retain some volume of sands before they are washed 

over into the inlet.  This may also starve to some degree the down coast sediment 

supply to the beachfront south of the channel.  Continued dredging efforts will 

remain necessary so that the estuary inlet does not become occluded and so that 

channel meandering towards the coastal bank does not occur.  Neglecting this 

activity and allowing the barrier spit to gain elevation and extent will only allow 

greater perturbations in the marsh system following the inevitable inlet opening. 

• Ellisville Marsh has had somewhat of a unique management history and because 

of its relatively small size as compared to other salt marshes, it might be assumed 
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that the scope of this study’s inference is unto itself or limited.  In fact, the 

conditions that this marsh experiences when inlet constrictions are rectified are 

tantamount to representation of a marsh’s response to the intermediate-range 

scenarios predicted for sea level rise by the year 2025 (MA CZM 2013). As such, 

the marsh response to these perturbations should be looked at as a demonstration 

of how a “hemmed-in” marsh will respond.  Individuals responsible for the 

protection of this type of resource might use the results of this 4-year study and 

ongoing vegetation and tidal range assessment to forecast for their specific 

northeastern marshes. 
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APPENDIX A 

ALCOHOL DEHYDROGENASE/SOLUBLE PROTEIN PROTOCOL 

 

Extraction Procedure from Spartina alterniflora root sample for (Alcohol 

Dehydrogenase (ADH) and Soluble Protein determination): 

1. Under liquid nitrogen in an ice-chilled mortar, approximately 0.5 g root material 

was homogenized for several minutes by grinding to powder in 2 ml of cold 

TRIS-HCl buffer (0.1 M, pH 8.5) with a final concentration of 5 mM 

dithiothreitol. Dithiothreitol has been used to trap or deactivate an inactivator of 

ADH (Shimomura and Beevers 1983). An additional 2 ml of extraction buffer 

was used to complete grinding. Benz (2007) reported using a ratio of 100 µL 

TRIS-HCL extraction buffer/0.01g fresh weight root tissue from Piriqueta 

carolina or a ratio of 0.1 mg/µl extraction buffer.  For maize, Thompson and 

Greenway (1991) used 0.3 g root tissue/1.5 ml extraction buffer~0.2 mg/µl.  For 

creeping bentgrass, Jiang and Wang (2006) used 0.5 g fresh root sample in 4 ml 

extraction buffer or a ratio of 0.125 mg/µl.  Studies using Spartina patens and S. 

alterniflora did not report the exact ratio of root tissue to extraction buffer 

(Burdick and Mendelssohn 1987; Mendelssohn et al. 1981; McKee and Patrick 

1988). 

2. An additional ml of extraction buffer was used to rinse pestle and mortar to help 

pour extract into tubes. A total of 5 ml per ~0.5 g sample was used to provide a 

0.1 ratio of root tissue to µl extraction buffer. Liquid was poured into pre-labeled 

15 ml centrifuge tubes and kept on ice. 
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3. Properly balanced centrifuge tubes were spun at 20,000 g for 30 min at 4˚C.  The 

literature reports widely varying spin times. 

4. Tubes with supernatant were kept on ice in the refrigerator. 

5. 300 µl of clear supernatant was used for each ADH analysis (see ADH assay 

procedure below). 

Procedure: Soluble Protein Analysis 

The Bradford assay, a colorimetric protein assay, was used to determine soluble 

protein. It is based on an absorbance shift of the dye Coomassie Brilliant Blue G-250 

under acid conditions when a redder form of the dye is converted into a bluer form on 

binding to protein (Bradford, 1976). During the formation of this complex, two types of 

bond interaction take place: the red form of Coomassie dye first donates its free electron 

to the ionizable groups on any protein. This causes a disruption of the protein's native 

state, consequently exposing its hydrophobic pockets. These pockets on the protein's 

tertiary structure bind non-covalently to the non-polar region of the dye via Van der 

Waals forces, positioning the positive amine groups in proximity with the negative 

charge of the dye. The bond is further strengthened by the ionic interaction between the 

two. The binding of the protein stabilizes the blue form of the Coomassie dye; thus the 

amount of the complex present in solution is a measure for the protein concentration, and 

can be estimated by use of an absorbance reading. The (bound) form of the dye has an 

absorption spectrum maximum at 595 nm. 

 

Standard Curve 

1. Test tubes (15 ml) labeled 0 through 9,  
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2. Corresponding to 0, 0.1, 0.2, 0.3, 0.4, 0.5, 1.0, 2.0, 3.0, and 4.0 ml of 1µg/µl BSA 

stock solution, and 

3. Corresponding to 5.0, 4.9, 4.8, 4.7, 4.6, 4.5, 4.0, 3.0, 2.0, and 1.0 ml 0.1 M TRIS-

HCl extraction buffer (with DTT). 

4. 100 µl of each protein standard solution was then added into 3 ml of Coomassie 

protein stain reagent and absorbance read at λ=595 nm (light path 1 cm, final 

volume 3.1 ml). Absorbance was read 5 minutes after developing color was 

initiated. TRIS-HCl buffer as a blank.  

5. The absorbance was converted to soluble protein concentration based on the 

standard curve. 

Sample Assay 

1. 100 µl of sample extract was added into 3 ml of color reagent and absorbance was 

read at λ=595 nm (light path 1 cm, final volume 3.1 ml). Absorbance was read 5 

minutes after developing color was initiated. TRIS-HCl buffer was used as a 

blank.  

Procedure for Alcohol Dehydrogenase Assay 

Standard curves were prepared with known concentrations of ADH. The specific activity 

of yeast ADH (EC 1.1.1.1) was ≥ 300 IU/mg in its crystallized form when stored at 4˚ C. 

ADH Yeast Protein Accession Number: P25377 

 

 

 Assay Mixture per Benz et al. (2007) 

0.2 ml NAD+ (20 mg/ml dH2O) 
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0.2 ml 95% ethanol       

0.6 ml 0.05 M TRIS-HCl with 5 mM DTT, pH 8.5 

0.1 ml sample extract/ADH solution 

Final reaction volume was 1.1 ml. Note that the reaction volumes of each component 

were tripled in order to read absorbance properly in the cuvette and had a final reaction 

volume of 3.3 ml. 

Sample Assay 

The first three components of the assay mixture were added and then the reaction begun 

by adding extract. The formation of NADH was followed at 340 nm (25˚C) every 30 

seconds following extract addition for a total of 7 minutes. 

Reagent Preparation 

a. TRIS-HCl Buffer: TRIS-HCl will react with Coomassie stain because it has an amino 

group, so therefore, one must subtract reagent blank for each protein assay. Prepare 0.05 

M TRIS-HCl buffer containing 5mM DTT, by dissolving 6.05 g of tris (hydroxymethyl) 

aminomethane (MW 121.14 g/mole) and 77.125 mg dithiothreitol (MW 154.25 g/mole) 

into 500 ml deionized water and bring to pH 8.5 (Benz 2007) using hydrochloric acid 

(HCl)(used 12 N droplet addition). (Calculate the number of moles of TRIS that are 

required by multiplying the molar concentration of buffer by the volume of buffer being 

made (moles of TRIS = mol/L x L).  Next, determine how many grams of TRIS this is 

by multiplying the number of moles by the molecular weight of TRIS (121.14 g/mol) 

grams of TRIS = (moles) x (121.14 g/mol).)  Dilute the buffer with deionized water to 

reach the desired final volume (1.0 L) of solution. Check pH and store at 4˚C. 
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b. Protein Stain: 0.01% Coomassie Brilliant Blue G-250, 4.7% ethanol, 8.5% 

phosphoric acid (Bradford 1976).   

• add 100 mg Coomassie Brilliant Blue G-250 to 50 ml 95% ethanol; dissolve on 

stir plate in beaker covered with watch glass to lessen evaporation 

• added 100 ml 85% phosphoric acid (may need more like 105-110 ml in order to 

lessen blue color) 

• diluted to 1 L with distilled water (DI) and filtered with funnel and Whatman No. 

1 filter paper directly into glass storage bottle (Note: took about 6 hrs. to filter 

with successive filter paper changes). 

• Store at room temperature in dark or aluminum foil covered bottle. 

c. Protein Stock: Prepared a 0.1% solution = 1µg/µl Bovine Serum Albumin (BSA) 

(dissolved 40 mg BSA into 40 g DI by stirring very slowly or else BSA would not go into 

solution completely and would foam). Stored at 4˚C. 

d. NAD+ (Cofactor): Make up fresh each assay day.  Needed 20-mg/ml concentration 

NAD+ for use.  Dissolve xx mg into xx ml of TRIS buffer (note: Benz says to use dH20) 

depending upon how much volume anticipated for use in one day. Since only had 1 g of 

NAD, dissolved 200 mg/10ml (enough for 50 assays per day). Pipetted 0.2 ml into each 

assay mixture to yield final molarity in assay mixture of 2.0 mM using NAD MW = 

663.4 g/mole. 

 

 

e. Ethanol (Substrate): Use 95% EtOH directly. 
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f. ADH (Enzyme): Make up fresh each assay day/for standard curve/spiking 

purposes. (Bergenmeyer says to dissolve in 0.1% Bovine Serum Albumin, but this 

protocol used TRIS-HCl buffer as in Sigma and Benz procedures.) For a functional assay, 

needed approximately 0.75 unit/ml of ADH activity to add to assay solution per Sigma 

procedure (final volume in assay 3.0 ml).  Prepared 5 ml of 1 mg/ml ADH solution, 

dissolved 5 mg ADH into 5 ml 0.05 M, pH 8.5 TRIS – HCl buffer. Assuming the activity 

of ADH is ~ 300 IU per mg, this solution must be diluted 400x to achieve a 0.75 unit/ml 

ADH activity solution, so 0.5 ml of 1 mg/ml ADH was brought to 200 ml in volumetric 

flask. Prepared standard solutions to encompass a range of activity around 0.75 units/ml 

when standard curve was necessary. Stored at 25˚C/4˚C depending on its intended use i.e. 

needed temperature acclimated to 25˚C for spectrophotometer to avoid fogging.  Pipetted 

0.3 ml and inverted cuvette to begin assay. 

Pre-testing and General Considerations 

Prepared a standard curve at outset of each assay, if necessary. Because ADH is 

not stable in suspension, assays had to be conducted rapidly.  Care was taken to make 

sure that testing with one batch of reagents represents complete spectrum of variable 

conditions in hydroperiod and that triplicate samples per location were performed using 

same reagent batches.  For example, wanted to avoid all “short” hydroperiod samples 

from being analyzed under the same conditions, and “long” hydroperiod samples being 

tested with entirely different reagent batch or considered grouping the dates of sampling.  
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APPENDIX B 

ELLISVILLE MARSH SOIL BORING LOGS 

 

 
Figure B.1. Vertical distribution of soil organic matter (loss on ignition) for transect 
1 PZ01 through PZ19 (top) and transect 2 PZ22 through PZ44 (bottom).  Varying 
widths of columns are irrelevant to interpretation. 
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Figure B.2. Vertical distribution of soil organic matter (loss on ignition) for transect 
3 PZ49 through PZ74 (top) and transects 4/5 PZ76 through PZ91 (bottom).  
Varying widths of columns are irrelevant to interpretation. 
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Figure B.3. Vertical distribution of sand for transect 1 PZ01 through PZ19 (top) and  
transect 2 PZ22 through PZ44 (bottom). Varying widths of columns are irrelevant 
to interpretation. 
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Figure B.4. Vertical distributions of sand for transect 3 PZ49 through PZ74 (top) 
and transects 4/5 PZ76 through PZ91 (bottom). Varying widths of columns are 
irrelevant to interpretation. 
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Figure B.5. Vertical distribution of silt for transects 1, PZ01 through PZ 19 (top) 
and transect 2, PZ22 through PZ44 (bottom).  Varying widths of columns are 
irrelevant to interpretation. 
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Figure B.6. Vertical distributions of silt for transect 3 PZ49 through PZ74 (top) and 
transects 4/5 PZ76 through PZ91 (bottom).  Varying widths of columns are 
irrelevant to interpretation. 
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Figure B.7. Vertical distribution of clay for transect 1 PZ01 through PZ19 (top) and 
transect 2 PZ22 through PZ44 (bottom). Varying widths of columns are irrelevant 
to interpretation. 
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Figure B.8. Vertical distribution of clay for transect 3 PZ49 through PZ74 (top) and 
transects 4/5 PZ76 through PZ91 (bottom). Varying widths of columns are 
irrelevant to interpretation.  
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APPENDIX C 

MARSH EQUILIBRIUM MODEL VER. 5.4 OUTPUTS (©MORRIS 2010) 

 

 
 
 
 
Figure C.1. Pre-dredge conditions as input to Marsh Equilibrium Model Ver. 5.4 
 



161 161 

 
 
 
 
 
Figure C.2. Post dredge conditions as input to Marsh Equilibrium Model Ver.5.4. 
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Figure C.3. Repeated episodic increases as input to Marsh Equilibrium Model 
Ver.5.4. 
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